Skip to main content

Desulfurococcales

  • Reference work entry
  • First Online:
The Prokaryotes

Introduction

The order Desulfurococcales (Huber and Stetter, 2001b) is one of three orders of the archaeal phylum Crenarchaeota (Woese et al., 1990), which also includes Thermoproteales (Huber and Stetter, 2001a) and Sulfolobales (Stetter, 1989). Cells of members of the Desulfurococcales are regular to irregular cocci, discs or dishes, which occur singly, in pairs, short chains, or grapelike aggregates. Diameters of coccoid cells vary from about 0.5 up to 15 µm, while disc-shaped cells frequently exhibit ultra-flat areas only about 0.1 to 0.2 µm thick. All members of the order Desulfurococcales are hyperthermophiles with optimal growth temperatures between 85 and 106°C. They grow anaerobically, facultatively anaerobically, or aerobically. Under autotrophic conditions, they gain energy by oxidation of hydrogen using elemental sulfur, thiosulfate, nitrate, or nitrite as electron acceptor, and they use CO2as a carbon source. Alternatively, organotrophic growth occurs by aerobic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aoshima, M., Y. Nishibe, M. Hasegawa, A. Yamagishi, and T. Oshima. 1996a Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12 Gene 180 183–187

    Article  CAS  PubMed  Google Scholar 

  • Aoshima, M., A. Yamagishi, and T. Oshima. 1996b Eubacteria-type isocitrate dehydrogenase from an Archaeon: Cloning, sequencing, and expression of a gene encoding isocitrate dehydrogenase from a hyperthermophilic archaebacterium, Caldococcus noboribetus Arch. Biochem. Biophys. 336 77–85

    Article  CAS  PubMed  Google Scholar 

  • Arab, H., H. Völker, and M. Thomm. 2000 Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece Int. J. Syst. Evol. Microbiol. 50 2101–2108

    Article  PubMed  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 250–296

    Google Scholar 

  • Baumeister, W., U. Santarius, S. Volker, R. Dürr, G. Lembcke, and H. Engelhardt. 1990 The surface protein of Hyperthermus butylicus: Three-dimensional structure and comparison with other archaebacterial surface proteins Syst. Appl. Microbiol. 13 105–111

    Article  CAS  Google Scholar 

  • Blöchl, E., R. Rachel, S. Burggraf, D. Hafenbradl, H. W. Jannasch, and K. O. Stetter. 1997 Pyrolobus fumarii, gen. and sp. nov., represents a novel group of Archaea, extending the upper temperature limit for life to 113°C Extremophiles 1 14–21

    Article  PubMed  Google Scholar 

  • Bonch-Osmolovskaya, E. A., A. I. Slesarev, M. L. Miroshnichenko, T. P. Svetlichnaya, and V. A. Alekseev. 1988 Characteristics of Desulfurococcus amylolyticus n. spec. a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island Microbiologiya 57 94–101

    CAS  Google Scholar 

  • Brock, T. D., K. M. Brock, R. T. Belly, and R. L. Weiss. 1972 Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature Arch. Microbiol. 84 56–68

    Google Scholar 

  • Burggraf, S., H. Huber, and K. O. Stetter. 1997 Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data Int. J. Syst. Bact. 47 657–660

    Article  CAS  Google Scholar 

  • Cann, I. K. O., S. Ishino, N. Nomura, Y. Sako, and Y. Ishino. 1999 Two family B DNA polymerases from Aeropyrum pernix, an aerobic hyperthermophilic crenarchaeote J. Bacteriol. 181 5984–5992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirmeier, R., M. Keller, G. Frey, H. Huber, and K. O. Stetter. 1998 Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi Eur. J. Biochem. 252 486–491

    Article  CAS  PubMed  Google Scholar 

  • Dirmeier, R., G. Hauska, and K. O. Stetter. 2000 ATP synthesis at 100°C by an ATPase purified from the hyperthermophilic archaeon Pyrodictium abyssi FEBS Lett. 467 101–104

    Article  CAS  PubMed  Google Scholar 

  • Dürr, R., R. Hegerl, S. Volker, U. Santarius, and W. Baumeister. 1991 Three-dimensional reconstruction of the surface protein of Pyrodictium brockii: Comparing two image processing strategies J. Struct. Biol. 106 181–190

    Article  Google Scholar 

  • Faguy, D. M., and F. W. Doolittle. 1999 Genomics: Lessons from the Aeropyrum pernix genome Curr. Biol. 9 883–886

    Article  Google Scholar 

  • Fiala, G., K. O. Stetter, H. W. Jannasch, T. A. Langworthy, and J. Madon. 1986 Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C Syst. Appl. Microbiol. 8 106–113

    Article  Google Scholar 

  • Hensel, R., K. Matussek, K. Michalke, L. Tacke, B. J. Tindall, M. Kohlhoff, B. Siebers, and J. Dielenschneider. 1997 Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland Syst. Appl. Microbiol. 20 102–110

    Article  Google Scholar 

  • Horn, C., B. Paulmann, G. Kerlen, N. Junker, and H. Huber. 1999 In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope J. Bacteriol. 181 5114–5118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, R., P. Stoffers, J. L. Cheminee, H. H. Richnow, and K. O. Stetter. 1990 Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount Nature 345 179–182

    Article  Google Scholar 

  • Huber, R., and K. O. Stetter. 1992 The order Thermoprotealesd ed Springer-Verlag New York NY 677–683

    Google Scholar 

  • Huber, R., S. Burggraf, T. Mayer, S. M. Barns, P. Rossnagel, and K. O. Stetter. 1995 Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis Nature 367 57–58

    Article  Google Scholar 

  • Huber, R., D. Dyba, H. Huber, S. Burggraf, and R. Rachel. 1998 Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolat In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2ned after its prediction from environmentally derived 16S rRNA sequences Int. J. Syst. Bact. 48 31–38

    Google Scholar 

  • Huber, H., S. Burggraf, T. Mayer, I. Wyschkony, R. Rachel, and K. O. Stetter. 2000a Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus. sp. nov Int. J. Syst. Evol. Microbiol. 50 2093–2100

    Article  PubMed  Google Scholar 

  • Huber, R., H. Huber, and K. O. Stetter. 2000b Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties FEMS Microbiol. Rev. 24 615–623

    Article  CAS  PubMed  Google Scholar 

  • Huber, H., and K. O. Stetter. 2001a Order I: Thermoproteales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 170

    Google Scholar 

  • Huber, H., and K. O. Stetter. 2001b Order II: Desulfurococcales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 179–180

    Google Scholar 

  • Huber, H., M. J. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer, and K. O. Stetter. 2002 A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont Nature 417 63–67

    Article  CAS  PubMed  Google Scholar 

  • Hügler, M., H. Huber, K. O. Stetter, and G. Fuchs. 2003 Autotrophic CO2 Fixation Pathways in Archaea (Crenarchaeota) Arch Microbiol 179(3) 160–173

    Article  Google Scholar 

  • Jochimsen, B., S. Peinemann-Simon, H. Völker, D. Stüben, R. Botz, P. Stoffers, P. R. Dando, and M. Thomm. 1997 Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece Extremophiles 1 67–73

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayashi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, M. Takahashi, M. Sekine, S. Baba, A. Ankai, H. Kosugi, A. Hosoyama, S. Fukui, Y. Nagai, K. Nishijima, H. Nakazawa, M. Takamiya, S. Masuda, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, K. Kubota, Y. Nakamura, N. Nomura, Y. Sako, and H. Kikuchi. 1999 Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1 DNA Res. 6 83–101 and 145–152

    Article  Google Scholar 

  • Kjems, J., N. Larsen, J. Z. Dalgaard, R. A. Garrett, and K. O. Stetter. 1992 Phylogenetic relationships amongst the hyperthermophilic archaea determined from partial 23S rRNA gene sequences Syst. Appl. Microbiol. 15 203–208

    Article  Google Scholar 

  • König, H., P. Messner, and K. O. Stetter. 1988 The fine structure of the fibers of Pyrodictium occultum FEMS Microbiol. Lett. 49 207–212

    Article  Google Scholar 

  • Kovacs, K. L., and G. Rakhely. 1996 Plating hyperthermophilic Archaea on solid surface Analyt. Biochem. 243 181–183

    Article  PubMed  Google Scholar 

  • Larsen, N., H. Leffers, J. Kjems, and R. A. Garrett. 1986 Evolutionary divergence between the ribosomal RNA operons of Halococcus morrhuae and Desulfurococcus mobilis Syst. Appl. Microbiol. 7 49–57

    Article  CAS  Google Scholar 

  • Leuschner, C., and G. Antranikian. 1995 Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms World J. Microbiol. Biotechnol. 11 95–114

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, W., and O. Strunk. 2001 ARB: A software environment for sequence data

    Google Scholar 

  • Mai, B. 1998a In vitro Untersuchungen zum extrazellulären Netzwerk von Pyrodictium abyssi TAG11 (PhD thesis) University of Regensburg Regensburg Germany

    Google Scholar 

  • Mai, B., G. Frey, R. V. Swanson, E. J. Mathur, and K. O. Stetter. 1998b Molecular cloning and functional expression of a protein-serine/threonine phosphatase from the hyperthermophilic archaeon Pyrodictium abyssi TAG11 J. Bacteriol. 180 4030–4035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr, J., A. Lupas, J. Kellermann, C. Eckerskorn, W. Baumeister, and J. Peters. 1996 A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus Curr. Biol. 6 739–749

    Article  CAS  PubMed  Google Scholar 

  • Morii, H., H. Yagi, H. Akatsu, N. Nomura, Y. Sako, and Y. Koga. 1999 A novel phosphoglycolipid archaetidyl (glucosyl) inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 Biochim. Biophys. Acta 1436 426–436

    Article  CAS  PubMed  Google Scholar 

  • Nomura, N., Y. Sako, and A. Uchida. 1998 Molecular characterization and postselecting fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1 J. Bacteriol. 180 3635–3643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, J., M. Nitsch, B. Kühlmorgen, R. Golbik, A. Lupas, J. Kellermann, H. Engelhardt, J.-P. Pfander, S. Müller, K. Goldie, A. Enge, K. O. Stetter, and W. Baumeister. 1995 Tetrabrachion: A filamentous archaebacterial surface protein assembly of unusual structure and extreme stability J. Molec. Biol. 245 385–401

    Article  CAS  PubMed  Google Scholar 

  • Phipps, B. M., A. Hoffmann, K. O. Stetter, and W. Baumeister. 1991 A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria EMBO J. 10 1711–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps, B. M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993 Structure of a molecular chaperone from a thermophilic archaebacterium Nature 361 475–477

    Article  CAS  Google Scholar 

  • Pihl, T. D., and R. J. Maier. 1991 Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii J. Bacteriol. 173 1839–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihl, T. D., L. K. Black, B. A. Schulman, and R. J. Maier. 1992 Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii J. Bacteriol. 174 137–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pley, U., J. Schipka, A. Gambacorta, H. W. Jannasch, H. Fricke, R. Rachel, and K. O. Stetter. 1991 Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C Syst. Appl. Microbiol. 14 245–253

    Article  Google Scholar 

  • Prokofeva, M. I., M. L. Miroshnichenko, N. A. Kostrikina, N. A. Chernyh, B. B. Kuznetsov, T. P. Tourova, and E. A. Bonch-Osmolovskaya. 2000 Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka Int. J. Syst. Bact. 50 2001–2008

    Article  Google Scholar 

  • Rachel, R. 1999 Fine structure of hyperthermophilic prokaryotes In: J. Seckbach (Ed.) Enigmatic Microorganisms and Life in Extreme Environments Kluwer Dordrecht The Netherlands 277–289

    Chapter  Google Scholar 

  • Rachel, R., I. Wyschkony, S. Riehl, and H. Huber. 2002 The ultrastructure of Ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon Archaea 1 9–18

    Article  CAS  PubMed  Google Scholar 

  • Rieger, G., R. Rachel, R. Hermann, and K. O. Stetter. 1995 Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi J. Struct. Biol. 115 78–87

    Article  Google Scholar 

  • Sako, Y., N. Nomura, A. Uchida, Y. Ishida, H. Morii, Y. Koga, T. Hoaki, and T. Maruyama. 1996 Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C Int. J. Syst. Bact. 46 1070–1077

    Article  CAS  Google Scholar 

  • Schönheit, P., and T. Schäfer. 1995 Metabolism of hyperthermophiles World J. Microbiol. Biotechnol. 11 26–57

    Article  PubMed  Google Scholar 

  • Stetter, K. O. 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C Nature 300 258–260

    Article  Google Scholar 

  • Stetter, K. O., H. König, and E. Stackebrandt. 1983 Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C Syst. Appl. Microbiol. 4 535–551

    Article  CAS  PubMed  Google Scholar 

  • Stetter, K. O., and W. Zillig. 1985 Thermoplasma and the thermophilic sulfur-dependent archaebacteria In: C. Woese, and R. S. Wolfe (Eds.) The Bacteria Academic Press New York NY 8 100–201

    Google Scholar 

  • Stetter, K. O. 1986 Diversity of extremely thermophilic archaebacteria In: T. D. Brock (Ed.) Thermophiles: General, Molecular, and Applied Microbiology Wiley and Sons New York NY 39–74

    Google Scholar 

  • Stetter, K. O. 1989 Order III: Sulfolobales In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology William and Wilkins Baltimore MD 2250

    Google Scholar 

  • Stetter, K. O. 1995 Microbial life in hyperthermal environments ASM News 61 285–290

    Google Scholar 

  • Stetter, K. O. 1999 Hyperthermophiles: Isolation, classification, and properties In: K. Horikoshi and W. D. Fasman (Eds.) Extremophiles: Microbial Life in Extreme Environments Wiley New York NY 1–24

    Google Scholar 

  • Stetter, K. O. 2001 Genus VII: Thermodiscus In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 189–190

    Google Scholar 

  • Stetter, K. O. 2002 Mikroorganismen an extremen Standorten In: Rundgespräche der Kommision für ökologie, Bd. 23: Bedeutung der Mikroorganismen für die Umwelt Pfeil Munich Germany 123–136

    Google Scholar 

  • Thomas, N. A., S. L. Bardy, and K. F. Jarrell. 2001 The archaeal flagellum: A different kind of prokaryotic motility structure FEMS Microbiol. Rev. 25 147–174

    Article  CAS  PubMed  Google Scholar 

  • Wildhaber, I., U. Santarius, and W. Baumeister. 1987 Three-dimensional structure of the surface protein of Desulfurococcus mobilis J. Bacteriol. 169 5563–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C. R., O. Kandler, and M. L. Wheelis. 1990 Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eukarya Proc. Natl. Acad. Sci. USA 87 4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zillig, W., K. O. Stetter, D. Prangishvili, W. Schäfer, S. Wunderl, D. Janekovic, I. Holz, and P. Palm. 1982 Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales Zbl. Bakt. Hyg., I. Abt. Orig. C 3 304–317

    Google Scholar 

  • Zillig, W., I. Holz, D. Janekovic, H.-P. Klenk, E. Imsel, J. Trent, S. Wunderl, V. H. Forjaz, R. Coutinho, and T. Ferreira. 1990 Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides J. Bacteriol. 172 3959–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zillig, W., I. Holz, and S. Wunderl. 1991 Hyperthermus butylicus gen. nov., sp. nov., a hyperthermophilic, anaerobic, peptide-fermenting, facultatively H2S-generating archaebacterium Int. J. Syst. Bact. 41 169–170

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Huber, H., Stetter, K.O. (2006). Desulfurococcales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30743-5_4

Download citation

Publish with us

Policies and ethics