Skip to main content

Bacterial Behavior

  • Reference work entry
The Prokaryotes

1 Introduction

It is apparent that the majority of prokaryotic species move around their environment, either actively swimming using flagella, or gliding over surfaces. Although a lot less is understood about gliding, we know that swimming uses the most complex organelle identified in prokaryotes. The flagellum is the product of the controlled expression of up to 50 genes, producing an organelle which has components in the cytoplasm, the cytoplasmic membrane, the outer membrane and externally. This flagellar structure can rotate at speeds of up to 350 Hz to move a bacterium at well over 20 µm/sec through its environment. Incredibly, if driven by sodium rather than protons the flagellum can rotate at over 1,300 Hz, moving cells at speeds as great as 150 µm/sec. Unlike gliding, which may have evolved independently several times during evolution, flagellar driven motility may have only evolved once, as all bacteria and archaea seem to have flagella built along similar patterns, although...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Adler, J. 1969 Chemoreceptors in bacteria Science 166 1588–1597

    Article  PubMed  CAS  Google Scholar 

  • Adler, J., C. Li, A. J. Boileau, Y. Qi, and C. Kung. 1988 Osmotaxis in Escherichia coli Cold Spring Harbor Symp. Quant. Biol. 53 19–22

    Article  PubMed  CAS  Google Scholar 

  • Agarwal, S., D. W. Hunnicutt, and M. J. McBride. 1997 Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA Proc. Natl. Acad. Sci. USA 94 12139–12144

    Article  PubMed  CAS  Google Scholar 

  • Akerley, B. J., P. A. Cotter, and J. F. Miller. 1995 Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction Cell 80 611–620

    Article  PubMed  CAS  Google Scholar 

  • Alam, M., and D. Oesterhelt. 1984 Morphology, function and isolation of halobacterial flagella J. Molec. Biol. 176 459–475

    Article  PubMed  CAS  Google Scholar 

  • Alberti, L., and R. M. Harshey. 1990 Differentiation of Serratia marcescens 274 into swimmer and swarmer cells J. Bacteriol. 172 4322–4328

    PubMed  CAS  Google Scholar 

  • Alley, M. R. K., J. R. Maddock, and L. Shapiro. 1992 Polar localization of a bacterial chemoreceptor Genes Devel. 6 825–836

    Article  PubMed  CAS  Google Scholar 

  • Allison, C., N. Coleman, P. L. Jones, and C. Hughes. 1992 Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation Infect. Immun. 60 4740–4746

    PubMed  CAS  Google Scholar 

  • Alm, R. A., and J. S. Mattick. 1997 Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa Gene 192 89–98

    Article  PubMed  CAS  Google Scholar 

  • Ames, P., and K. Bergman. 1981 Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti J. Bacteriol. 148 728–729

    PubMed  CAS  Google Scholar 

  • Ames, P., and J. S. Parkinson. 1994 Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor J. Bacteriol. 176 6340–6348

    PubMed  CAS  Google Scholar 

  • Andrade, M., G. Casari, A. de Daruvar, C. Sander, R. Schneider, J. Tamames, A. Valencia, and C. Ouzounis. 1997 Sequence analysis of the Methanococcus jannaschii genome and the prediction of protein function Comput. Appl. Biosci. 13 481–483

    PubMed  CAS  Google Scholar 

  • Armitage, J. P., and R. M. Macnab. 1987 Unidirectional intermittent rotation of the flagellum of Rhodobacter sphaeroides J. Bacteriol. 169 514–518

    PubMed  CAS  Google Scholar 

  • Armitage, J. P. 1997a Behavioural responses of bacteria to light and oxygen Arch. Microbiol. 168 249–261

    Article  PubMed  CAS  Google Scholar 

  • Armitage, J. P. 1997b Three hundred years of bacterial motility In: M. G. Ord and L. A. Stocken (Eds.) Further Milestones in Biochemistry JAI Press Greenwich, CT 107–172

    Google Scholar 

  • Armitage, J. P., and R. Schmitt. 1997c Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143 3671–3682

    Article  PubMed  CAS  Google Scholar 

  • Armitage, J. P. 1998 Motility responses towards light shown by phototrophic bacteria In: M. X. Caddick, S. Baumberg, D. A. Hodgson, and M. K. Phillips-Jones (Eds.) Microbial Responses to Light and Time Cambridge University Press Cambridge, UK 33–56

    Google Scholar 

  • Armitage, J. P. 1999a Bacterial tactic responses Adv. Microb. Physiol. 41 229–289

    Article  PubMed  CAS  Google Scholar 

  • Armitage, J. P., T. P. Pitta, M. A. Vigeant, H. L. Packer, and R. M. Ford. 1999b Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed J. Bacteriol. 181 4825–4833

    PubMed  CAS  Google Scholar 

  • Asai, Y., S. Kojima, H. Kato, N. Nishioka, I. Kawagishi, and M. Homma. 1997 Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium J. Bacteriol. 179 5104–5110

    PubMed  CAS  Google Scholar 

  • Ashby, A. M., M. D. Watson, and C. H. Shaw. 1988 A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone FEMS Microbiol. Lett. 41 189–192

    Article  Google Scholar 

  • Aswad, D. W., and D. E. Koshland Jr. 1975 Evidence for an S-adenosyl methionine requirement in the chemotactic behavior of Salmonella typhimurium J. Molec. Biol. 97 207–223

    Article  PubMed  CAS  Google Scholar 

  • Atsumi, T., L. McCarter, and Y. Imae. 1992 Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces Nature 355 182–184

    Article  PubMed  CAS  Google Scholar 

  • Barak, R., and M. Eisenbach. 1992a Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor Biochemistry 31 1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Barak, R., and M. Eisenbach. 1992b Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes J. Bacteriol. 174 643–645

    PubMed  CAS  Google Scholar 

  • Barnakov, A. N., L. A. Barnakova, and G. L. Hazelbauer. 1998 Comparison in vitro of a high-and a low-abundance chemoreceptor of Escherichia coli: Similar kinase activation but different methyl-accepting activities J. Bacteriol. 180 6713–6718

    PubMed  CAS  Google Scholar 

  • Bass, R. B., and J. J. Falke. 1999 The aspartate receptor cytoplasmic domain: In situ chemical analysis of structure, mechanism and dynamics Struct. Fold. Des. 7 829–840

    Article  CAS  Google Scholar 

  • Beatson, P. J., and K. C. Marshall. 1994 A proposed helical mechanism for gliding motility in three gliding bacteria (order Cytophagales) Can. J. Microbiol. 40 173–183

    Article  Google Scholar 

  • Beel, B. D., and G. L. Hazelbauer. 2001 Substitutions in the periplasmic domain of low-abundance chemoreceptor trg that induce or reduce transmembrane signaling: Kinase activation and context effects J. Bacteriol. 183 671–679

    Article  PubMed  CAS  Google Scholar 

  • Benov, L., and I. Fridovich. 1996 Escherichia coli exhibits negative chemotaxis in gradients of hydrogen peroxide, hypochlorite, and N-chlorotaurine:Products of the respiratory burst of phagocytic cells Proc. Natl. Acad. Sci. USA 93 4999–5002

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and D. A. Brown. 1972 Chemotaxis in Escherichia coli analysed by three-dimensional tracking Nature 239 500–504

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and R. A. Anderson. 1973 Bacteria swim by rotating their flagellar filaments Nature 245 380–382

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C. 1976 How spirochetes may swim J. Theor. Biol. 56 269–273

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and L. Turner. 1979 Movement of bacteria in viscous environments Nature 278 349–351

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C. 1983 Random Walks in Biology, Princeton, NJ

    Google Scholar 

  • Berg, H. C., and L. Turner. 1995 Cells of Escherichia coli swim either end forward Proc. Natl. Acad. Sci. USA 92 477–479

    Article  PubMed  CAS  Google Scholar 

  • Berry, R. M., and J. P. Armitage. 1999 The bacterial flagellar motor Advances in Microbial Physiology 41 292–337

    Article  Google Scholar 

  • Berry, R. M., and J. P. Armitage. 2000 Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity Biophys. J. 78 1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Bibikov, S. I., R. Biran, K. E. Rudd, and J. S. Parkinson. 1997 A signal transducer for aerotaxis in Escherichia coli J. Bacteriol. 179 4075–4079

    PubMed  CAS  Google Scholar 

  • Bibikov, S. I., L. A. Barnes, Y. Gitin, and J. S. Parkinson. 2000 Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli Proc. Natl. Acad. Sci. USA 97 5830–5835

    Article  PubMed  CAS  Google Scholar 

  • Bilwes, A. M., L. A. Alex, B. R. Crane, and M. I. Simon. 1999 Structure of CheA, a signal-transducing histidine kinase Cell 96 131–141

    Article  PubMed  CAS  Google Scholar 

  • Blackhart, B. D., and D. R. Zusman. 1985 “Frizzy” genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility Proc. Natl. Acad. Sci. USA 82 8767–8770

    Article  PubMed  CAS  Google Scholar 

  • Blackhart, B. D., and D. R. Zusman. 1986 Analysis of the products of the Myxococcus xanthus frz genes J. Bacteriol. 166 673–678

    PubMed  CAS  Google Scholar 

  • Blair, D. F., and H. C. Berg. 1990 The MotA protein of E. coli is a proton-conducting component of the flagellar motor Cell 60 439–449

    Article  PubMed  CAS  Google Scholar 

  • Blair, D. F., and H. C. Berg. 1991 Mutations in the MotA protein of Escherichia coli reveal domains critical for proton conduction J. Molec. Biol. 221 1433–1442

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., and R. B. Frankel. 1981 Magnetic navigation in bacteria Sci. Am. 245 42–49

    Article  Google Scholar 

  • Blakemore, R. P. 1982 Magnetotactic bacteria Ann. Rev. Microbiol. 36 217–238

    Article  CAS  Google Scholar 

  • Blat, Y., and M. Eisenbach. 1994 Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ Biochemistry 33 902–906

    Article  PubMed  CAS  Google Scholar 

  • Blat, Y., B. Gillespie, A. Bren, F. W. Dahlquist, and M. Eisenbach. 1998 Regulation of phosphatase activity in bacterial chemotaxis J. Molec. Biol. 284 1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., J. E. Segall, and H. C. Berg. 1982 Impulse responses in bacterial chemotaxis Cell 31 215–226

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., and H. C. Berg. 1984 Successive incorporation of force generating units in the bacterial rotary motor Nature 309 470–472

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., D. F. Blair, and H. C. Berg. 1989 Compliance of bacterial flagella measured with optical tweezers Nature 338 514–518

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., D. F. Blair, and H. C. Berg. 1991 Compliance of bacterial polyhooks measured with optical tweezers Cytometry 12 492–496

    Article  PubMed  CAS  Google Scholar 

  • Bogomolni, R. A., W. Stoeckenius, I. Szundi, E. Perozo, K. D. Olson, and J. L. Spudich. 1994 Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I Proc. Natl. Acad. Sci. USA 91 10188–10192

    Article  PubMed  CAS  Google Scholar 

  • Bordas, M. A., M. C. Balebona, M. J. Rodriguez, J. J. Borrego, and M. A. Morinigo. 1998 Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.) Appl. Environ. Microbiol. 64 1573–1575

    PubMed  CAS  Google Scholar 

  • Borkovich, K. A., L. A. Alex, and M. I. Simon. 1992 Attenuation of sensory receptor signaling by covalent modification Proc. Natl. Acad. Sci. USA 89 6756–6760

    Article  PubMed  CAS  Google Scholar 

  • Bourret, R. B., J. F. Hess, and M. I. Simon. 1990 Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY Proc. Natl. Acad. Sci. USA 87 41–45

    Article  PubMed  CAS  Google Scholar 

  • Brahamsha, B. 1996 An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus Proc. Natl. Acad. Sci. USA 93 6504–6509

    Article  PubMed  CAS  Google Scholar 

  • Braun, T. F., S. Poulson, J. B. Gully, J. C. Empey, W. S. Van, A. Putnam, and D. F. Blair. 1999 Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli J. Bacteriol. 181 3542–3551

    PubMed  CAS  Google Scholar 

  • Bray, D., M. D. Levin, and F. C. Morton. 1998 Receptor clustering as a cellular mechanism to control sensitivity Nature 393 85–88

    Article  PubMed  CAS  Google Scholar 

  • Bren, A., and M. Eisenbach. 1998 The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY J. Molec. Biol. 278 507–514

    Article  PubMed  CAS  Google Scholar 

  • Brenner, M. P., L. S. Levitov, and E. O. Budrene. 1998 Physical mechanisms for chemotactic pattern formation by bacteria Biophys. J. 74 1677–1693

    Article  PubMed  CAS  Google Scholar 

  • Brown, K. L., and K. T. Hughes. 1995 The role of anti-sigma factors in gene regulation Molec. Microbiol. 16 397–404

    Article  CAS  Google Scholar 

  • Brun, Y. V., G. Marczynski, and L. Shapiro. 1994 The expression of asymmetry during caulobacter cell differentiation Ann. Rev. Biochem. 63 419–450

    Article  PubMed  CAS  Google Scholar 

  • Budrene, E. O., and H. C. Berg. 1995 Dynamics of formation of symmetrical patterns by chemotactic bacteria Nature 376 49–53

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles, G., L. G. Wall, A. T. De Micheli, W. Macchi, W. D. Bauer, and G. Favelukes. 1988 Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti Plant Physiol. 86 1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Charon, N. W., E. P. Greenberg, M. B. H. Koopman, and R. J. Limberger. 1992 Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella Res. Microbiol. 143 597–603

    Article  PubMed  CAS  Google Scholar 

  • Chervitz, S. A., and J. Falke. 1995 Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor J. Biol. Chem. 270 24043–24053

    Article  PubMed  CAS  Google Scholar 

  • Cho, H. S., S. Y. Lee, D. Yan, X. Pan, J. S. Parkinson, S. Kustu, D. E. Wemmer, and J. G. Pelton. 2000 NMR structure of activated CheY J. Molec. Biol. 297 543–551

    Article  PubMed  CAS  Google Scholar 

  • Conley, M. P., A. J. Wolfe, D. F. Blair, and H. C. Berg. 1989 Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli J. Bacteriol. 171 5190–5193

    PubMed  CAS  Google Scholar 

  • Cossart, P., and H. Bierne. 2001 The use of host cell machinery in the pathogenesis of Listeria monocytogenes Curr. Opin. Immunol. 13 96–103

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Z. Lewandowski, D. DeBeer, D. Caldwell, D. Korber, and G. James. 1994 Biofilms, the customized microniche J. Bacteriol. 176 2137–2142

    PubMed  CAS  Google Scholar 

  • Costerton, J. W. 1995 Overview of microbial biofilms J. Indust. Microbiol. 15 137–140

    Article  CAS  Google Scholar 

  • Daniels, M. J., and J. M. Longland. 1984 Chemotactic behavior of spiroplasms Curr. Microbiol. 10 191–194

    Article  CAS  Google Scholar 

  • Danielson, M. A., H.-P. Biemann, D. E. Koshland Jr., and J. J. Falke. 1994 Attractant-and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: A 19F NMR study Biochemistry 33 6100–6109

    Article  PubMed  CAS  Google Scholar 

  • Darzins, A., and M. A. Russell. 1997 Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system—a review Gene 192 109–115

    Article  PubMed  CAS  Google Scholar 

  • Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998 The involvement of cell-to-cell signals in the development of a bacterial biofilm Science 280 295–298

    Article  PubMed  CAS  Google Scholar 

  • Dekkers, L. C., C. J. Bloemendaal, L. A. de Weger, C. A. Wijffelman, H. P. Spaink, and B. J. Lugtenberg. 1998 A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365 Molec. Plant-Microbe Interact. 11 45–56

    Article  CAS  Google Scholar 

  • Ditty, J. L., and C. S. Harwood. 1999 Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12 membrane-spanning regions J. Bacteriol. 181 5068–5074

    PubMed  CAS  Google Scholar 

  • Djordjevic, S., and A. M. Stock. 1997 Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine Structure. 5 545–558

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic, S., and A. M. Stock. 1998 Structural analysis of bacterial chemotaxis proteins: Components of a dynamic signaling system J. Struct. Biol. 124 189–200

    Article  PubMed  CAS  Google Scholar 

  • Dolla, A., R. Fu, M. J. Brumlik, and G. Voordouw. 1992 Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli J. Bacteriol. 174 1726–1733

    PubMed  CAS  Google Scholar 

  • Dramsi, S., and P. Cossart. 1998 Intracellular pathogens and the actin cytoskeleton Ann. Rev. Cell Dev. Biol. 14 137–166

    Article  CAS  Google Scholar 

  • Dreyfus, G., A. W. Williams, I. Kawagishi, and R. M. Macnab. 1993 Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens J. Bacteriol. 175 3131–3138

    PubMed  CAS  Google Scholar 

  • Dubbs, J. M., T. H. Bird, C. E. Bauer, and F. R. Tabita. 2000 Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI promoter-operator region J. Biol. Chem. 275 19224–19230

    Article  PubMed  CAS  Google Scholar 

  • Duke, T. A., and D. Bray. 1999 Heightened sensitivity of a lattice of membrane receptors Proc. Natl. Acad. Sci. USA 96 10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Dworkin, M. 1999 Fibrils as extracellular appendages of bacteria: Their role in contact-mediated cell-cell interactions in Myxococcus xanthus BioEssays 21 590–595

    Article  PubMed  CAS  Google Scholar 

  • Eaton, K. A., D. R. Morgan, and S. Krakowka. 1992 Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori J. Med. Microbiol. 37 123–127

    Article  PubMed  CAS  Google Scholar 

  • Eberl, L., M. K. Winson, C. Sternberg, G. S. Stewart, G. Christiansen, S. R. Chhabra, B. Bycroft, P. Williams, S. Molin, and M. Givskov. 1996 Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens Molec. Microbiol. 20 127–136

    Article  CAS  Google Scholar 

  • Emerson, D. 1999 Complex pattern formation by Pseudomonas strain KC in response to nitrate and nitrite Microbiology 145 633–641

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, H., S. C. Schuster, and E. Baeuerlein. 1993 An archimedian spiral: The basal disk of the Wolinella flagellar motor Science 262 1046–1048

    Article  PubMed  CAS  Google Scholar 

  • Engelmann, T. W. 1881 Bacterium photometricum: An article on the comparative physiology of the sense for light and colour Arch. Ges. Physiol. Bonn. 30 95–124

    Article  Google Scholar 

  • Eraso, J. M., and S. Kaplan. 2000 From redox flow to gene regulation: Role of the PrrC protein of Rhodobacter sphaeroides 2.4.1 Biochemistry 39 2052–2062

    Article  PubMed  CAS  Google Scholar 

  • Fahrner, K. A., S. M. Block, S. Krishnaswamy, J. S. Parkinson, and H. C. Berg. 1994 A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli J. Molec. Biol. 238 173–186

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J., and D. E. J. Koshland. 1987 Global flexibility in a sensory receptor: A site-directed cross-linking approach Science 237 1596–1600

    Article  PubMed  CAS  Google Scholar 

  • Falke, J. J., R. B. Bass, S. L. Butler, S. A. Chervitz, and M. A. Danielson. 1997 The two-component signaling pathway of bacterial chemotaxis: A molecular view of signal transduction by receptors, kinases, and adaptation enzymes Ann. Rev. Cell Dev. Biol. 13 457–512

    Article  CAS  Google Scholar 

  • Falke, J. J., and G. L. Hazelbauer. 2001 Transmembrane signaling in bacterial chemoreceptors Trends Biochem. Sci. 26 257–265

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, O. V., N. N. Khechinashvili, R. Kamiya, and S. Asakura. 1984 Multidomain of flagellin J. Molec. Biol. 175 83–87

    Article  PubMed  CAS  Google Scholar 

  • Feng, X., A. A. Lilly, and G. L. Hazelbauer. 1999 Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site J. Bacteriol. 181 3164–3171

    PubMed  CAS  Google Scholar 

  • Foynes, S., N. Dorrell, S. J. Ward, R. A. Stabler, A. A. McColm, A. N. Rycroft, and B. W. Wren. 2000 Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa Infect. Immun. 68 2016–2023

    Article  PubMed  CAS  Google Scholar 

  • Frankel, R. B., D. A. Bazylinski, M. S. Johnson, and B. L. Taylor. 1997 Magneto-aerotaxis in marine coccoid bacteria Biophys. J. 73 994–1000

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht, F., and M. Way. 2001 Surfing pathogens and the lessons learned for actin polymerization Trends Cell. Biol. 11 30–38

    Article  PubMed  CAS  Google Scholar 

  • Frostl, J. M., and J. Overmann. 1998 Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum” Arch. Microbiol. 169 129–135

    Article  PubMed  CAS  Google Scholar 

  • Fu, R., and J. D. Wall, and G. Voordouw. 1994 DcrA, a c-type heme-containing methyl-accepting chemotaxis protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment J. Bacteriol. 176 344–350

    PubMed  CAS  Google Scholar 

  • Gardina, P., C. Conway, M. Kossman, and M. Manson. 1992 Aspartate and maltose-binding protein interact with adjacent sites in the tar chemotactic signal transducer of Escherichia coli J. Bacteriol. 174 1528–1536

    PubMed  CAS  Google Scholar 

  • Gardina, P. J., A. F. Bormans, M. A. Hawkins, J. W. Meeker, and M. D. Manson. 1997 Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor Molec. Microbiol. 23 1181–1191

    Article  CAS  Google Scholar 

  • Gardina, P. J., A. F. Bormans, and M. D. Manson. 1998 A mechanism for simultaneous sensing of aspartate and maltose by the Tar chemoreceptor of Escherichia coli Molec. Microbiol. 29 1147–1154

    Article  CAS  Google Scholar 

  • Garrity, L. F., S. L. Schiel, R. Merrill, J. Reizer, M. H. Saier Jr., and G. W. Ordal. 1998 Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC J. Bacteriol. 180 4475–4480

    PubMed  CAS  Google Scholar 

  • Gauden, D. E., and J. P. Armitage. 1995 Electron transport-dependent taxis in Rhodobacter sphaeroides J. Bacteriol. 177 5853–5859

    PubMed  CAS  Google Scholar 

  • Gegner, J. A., D. R. Graham, A. F. Roth, and F. W. Dahlquist. 1992 Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway Cell 70 975–982

    Article  PubMed  CAS  Google Scholar 

  • Gerbal, F., P. Chaikin, Y. Rabin, and J. Prost. 2000 An elastic analysis of Listeria monocytogenes propulsion Biophys. J. 79 2259–2275

    Article  PubMed  CAS  Google Scholar 

  • Givskov, M., J. Ostling, L. Eberl, P. W. Lindum, A. B. Christensen, B. Christensen, S. Molin, and S. Kjelleberg. 1998 Two separate regulatory systems perticipate in control of swarming motility of Serratia liquefaciens MG1 J. Bacteriol. 180 742–745

    PubMed  CAS  Google Scholar 

  • Goosney, D. L., G. M. deGrado, and B. B. Finlay. 1999 Putting E. coli on a pedestal: A unique system to study signal transduction and the actin cytoskeleton Trends Cell. Biol. 9 11–14

    Article  PubMed  CAS  Google Scholar 

  • Gorski, L., W. Godchaux III, and E. R. Leadbetter. 1993 Structural specificity of sugars that inhibit gliding motility of Cytophaga johnsonae Arch. Microbiol. 160 121–125

    Article  CAS  Google Scholar 

  • Grant, C. C. R., M. E. Konkel, W. Cieplak Jr., and L. S. Tompkins. 1993 Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures Infect. Immun. 61 1764–1771

    PubMed  CAS  Google Scholar 

  • Greenberg, E. P., and E. Canale-Parola. 1977 Motility of flagellated bacteria in viscous environments J. Bacteriol. 132 356–358

    PubMed  CAS  Google Scholar 

  • Grimm, A. C., and C. S. Harwood. 1999 NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene J. Bacteriol. 181 3310–3316

    PubMed  CAS  Google Scholar 

  • Grishanin, R. N., D. E. Gauden, and J. P. Armitage. 1997 Photoresponses in Rhodobacter sphaeroides: Role of photosynthetic electron transport J. Bacteriol. 179 24–30

    PubMed  CAS  Google Scholar 

  • Gygi, D., M. J. Bailey, C. Allison, and C. Hughes. 1995 Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis Molec. Microbiol. 15 761–769

    Article  CAS  Google Scholar 

  • Hamblin, P. A., N. A. Bourne, and J. P. Armitage. 1997 Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli Molec. Microbiol. 24 41–51

    Article  CAS  Google Scholar 

  • Harrison, D. M., J. Skidmore, J. P. Armitage, and J. R. Maddock. 1999 Localization and environmental regulation of MCP-like proteins in Rhodobacter sphaeroides Molec. Microbiol. 31 885–892

    Article  CAS  Google Scholar 

  • Harshey, R. M. 1994a Bees aren’t the only ones: Swarming in Gram-negative bacteria Molec. Microbiol. 13 389–394

    Article  CAS  Google Scholar 

  • Harshey, R. M., and T. Matsuyama. 1994b Dimorphic transition in Escherichia coli and Salmonella typhimurium: Surface-induced differentiation into hyperflagellate swarmer cells Proc. Natl. Acad. Sci. USA 91 8631–8635

    Article  PubMed  CAS  Google Scholar 

  • Hartzell, P. L., and P. Youderian. 1995 Genetics of gliding motility and development in Myxococcus xanthus Arch. Microbiol. 164 309–323

    Article  PubMed  CAS  Google Scholar 

  • Harwood, C. S., N. N. Nichols, M.-K. Kim, J. L. Ditty, and R. E. Parales. 1994 Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate J. Bacteriol. 176 6479–6488

    PubMed  CAS  Google Scholar 

  • Hawes, M. C., and L. Y. Smith. 1989 Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants J. Bacteriol. 171 5668–5671

    PubMed  CAS  Google Scholar 

  • Heinzen, R. A., S. S. Grieshaber, K. L. Van, and C. J. Devin. 1999 Dynamics of actin-based movement by Rickettsia rickettsii in vero cells Infect. Immun. 67 4201–4207

    PubMed  CAS  Google Scholar 

  • Hellingwerf, K. J., R. Kort, and W. Crielaard. 1998 Negative phototaxis in photosynthetic bacteria In: M. X. Caddick, S. Baumberg, D. A. Hodgson, and M. K. Phillips-Jones (Eds.) Microbial Responses to Light and Time Cambridge University Press Cambridge, UK 107–123

    Google Scholar 

  • Hoff, W. D., K. H. Jung, and J. L. Spudich. 1997 Molecular mechanism of photosignaling by archaeal sensory rhodopsins Ann. Rev. Biophys. Biomolec. Struct. 26 223–258

    Article  CAS  Google Scholar 

  • Hoff, W. D., A. Xie, I. H. van Stokkum, X. J. Tang, J. Gural, A. R. Kroon, and K. J. Hellingwerf. 1999 Global conformational changes upon receptor stimulation in photoactive yellow protein Biochemistry 38 1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Hou, S., R. W. Larsen, D. Boudko, C. W. Riley, E. Karatan, M. Zimmer, G. W. Ordal, and M. Alam. 2000 Myoglobin-like aerotaxis transducers in archaea and bacteria Nature 403 540–544

    Article  PubMed  CAS  Google Scholar 

  • Huettel, M., S. Forster, S. Kloeser, and H. Fossing. 1996 Vertical migration in the sediment dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations Appl. Environ. Microbiol. 62 1863–1872

    PubMed  CAS  Google Scholar 

  • Iino, T. 1969 Polarity of flagellar growth in Salmonella J.Gen.Microbiol. 56 227–239

    Article  PubMed  CAS  Google Scholar 

  • Iino, T., Kutsukake, K. 1983 Flagellar phase variation in Salmonella: A model system regulated by flip-flop DNA inversion In: K. Mizobuchi, I. Watanbe, and J. D. Watson (Eds.) Nucleic Acid Research: Future developments Academic Press New York, NY 395–406

    Google Scholar 

  • Imae, Y. 1985 Molecular mechanism of thermosensing in bacteria In: M. Eisenbach, and M. Balaban (Eds.) Sensing and Response in Microorganisms Elsevier Amsterdam, The Netherlands 73–81

    Google Scholar 

  • Iyoda, S., and K. Kutsukake. 1995 Molecular dissection of the flagellum specific anti-sigma factor, FlgM, of Salmonella typhimurium Molec. Gen. Genet. 249 417–424

    PubMed  CAS  Google Scholar 

  • Jasuja, R., J. Keyoung, G. P. Reid, D. R. Trentham, and S. Khan. 1999 Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate Biophys. J. 76 1706–1719

    Article  PubMed  CAS  Google Scholar 

  • Jeziore, S. Y., P. A. Hamblin, W. C. Bootle, P. S. Poole, and J. P. Armitage. 1998 Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides Microbiology 144 229–239

    Article  Google Scholar 

  • Jiang, Z. Y., H. Gest, and C. E. Bauer. 1997 Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components J. Bacteriol. 179 5720–5727

    PubMed  CAS  Google Scholar 

  • Jiang, Z. Y., B. G. Rushing, Y. Bai, H. Gest, and C. E. Bauer. 1998 Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis J. Bacteriol. 180 1248–1255

    PubMed  CAS  Google Scholar 

  • Jiang, Z., L. R. Swem, B. G. Rushing, S. Devanathan, G. Tollin, and C. E. Bauer. 1999 Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes Science 285 406–409

    Article  PubMed  CAS  Google Scholar 

  • Joss, A., K. Mez, B. Kanel, K. W. Hanselmann, and R. Bachofen. 1994 Measurement of fluorescence kinetics of phototrophic bacteria in their natural environment J. Plant Physiol. 144 333–338

    Article  CAS  Google Scholar 

  • Kaiser, G. E., and R. N. Doetsch. 1975 Enhanced translational motion of Leptospira in viscous environments Nature 255 656–657

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, D. 2000 Bacterial motility: How do pili pull? Curr. Biol. 10 R777–R780

    Article  PubMed  CAS  Google Scholar 

  • Kehry, M. R., and F. W. Dahlquist. 1982a Adaptation in bacterial chemotaxis: cheB-dependent modification permits additional methylations of sensory transducing proteins Cell 29 761–772

    Article  PubMed  CAS  Google Scholar 

  • Kehry, M. R., and F. W. Dahlquist. 1982b The methyl-accepting chemotaxis proteins of Escherichia coli: Identification of the multiple methylation sites on methyl-accepting chemotaxis protein 1 J. Biol. Chem. 257 10378–10386

    PubMed  CAS  Google Scholar 

  • Kehry, M. R., M. W. Bond, M. W. Hunkapiller, and F. W. Dahlquist. 1983 Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product Proc. Natl. Acad. Sci. USA 80 3599–3603

    Article  PubMed  CAS  Google Scholar 

  • Kehry, M. R., T. G. Doak, and F. W. Dahlquist. 1985 Sensory adaptation in bacterial chemotaxis:regulation of deadaptation J. Bacteriol. 163 983–990

    PubMed  CAS  Google Scholar 

  • Khan, S., and R. M. Macnab. 1980 The steady state counter-clockwise/clockwise ratio of the bacterial flagellar motors is regulated by proton motive force J. Molec. Biol. 138 563–597.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S., F. Castellano, J. L. Spudich, J. A. McCray, R. S. Goody, G. P. Reid, and D. R. Trentham. 1993 Excitatory signaling in bacterial probed by caged chemoeffectors Biophys. J. 65 2368–2382

    Article  PubMed  CAS  Google Scholar 

  • Kihara, S., and R. M. Macnab. 1981 Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria J. Bacteriol. 145 1209–1221

    PubMed  CAS  Google Scholar 

  • Kirby, J. R., M. M. Saulmon, C. J. Kristich, and G. W. Ordal. 1999 CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis J. Biol. Chem. 274 11092–11100

    Article  PubMed  CAS  Google Scholar 

  • Klose, K. E., V. Novik, and J. J. Mekalanos. 1998 Identification of multiple sigma54-dependent transcriptional activators in Vibrio cholerae J. Bacteriol. 180 5256–5259

    PubMed  CAS  Google Scholar 

  • Kohler, T., L. K. Curty, F. Barja, C. van Delden, and J. C. Pechere. 2000 Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili J. Bacteriol. 182 5990–5996

    Article  PubMed  CAS  Google Scholar 

  • Kolter, R., and R. Losick. 1998 One for all and all for one Science 280 226–227

    Article  PubMed  CAS  Google Scholar 

  • Kort, E. N., M. F. Goy, S. H. Larsen, and J. Adler. 1972 Methylation of a membrane protein involved in bacterial chemotaxis Proc. Natl. Acad. Sci. USA 72 3939–3943

    Article  Google Scholar 

  • Kostyukova, A. S., G. M. Gongadze, A. Y. Obraztsova, K. S. Laurinavichus, and O. V. Fedorov. 1992 Protein composition of Methanococcus thermolithotrophicus flagella Can. J. Microbiol. 38 1162–1166

    Article  CAS  Google Scholar 

  • Krah, M., W. Marwan, and D. Oesterhelt. 1994 A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archaeal signal transduction FEBS Lett. 353 301–304

    Article  PubMed  CAS  Google Scholar 

  • Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, T. M. Lara, A. Sukhan, J. E. Galan, and S. I. Aizawa. 1998 Supramolecular structure of the Salmonella typhimurium type III protein secretion system Science 280 602–605

    Article  PubMed  CAS  Google Scholar 

  • Kuo, S. C., and D. E. J. Koshland. 1987 Roles of cheY and cheZ gene products in controlling flagellar rotation in bacterial chemotaxis in Escherichia coli J. Bacteriol. 169 1307–1314

    PubMed  CAS  Google Scholar 

  • Kuo, S. C., and J. L. McGrath. 2000 Steps and fluctuations of Listeria monocytogenes during actin-based motility Nature 407 1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Kupper, J., I. Wildhaber, Z. Gao, and E. Baeuerlein. 1989 Basal-body-associated disks are additional structural elements of the flagellar apparatus isolated from Wolinella succinogens J. Bacteriol. 171 2803–2810

    PubMed  CAS  Google Scholar 

  • Kupper, J., W. Marwan, D. Typke, H. Grünberg, U. Uwer, M. Gluch, and D. Oesterhelt. 1994 The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure J. Bacteriol. 176 5184–5187

    PubMed  CAS  Google Scholar 

  • Kurdish, I. K., T. S. Antonyuk, and N. V. Chuiko. 2001 Influence of environmental factors on the chemotaxis of Bradyrhizobium japonicum Microbiology 70 91–95

    Article  CAS  Google Scholar 

  • Kutsukake, K., and T. Iino. 1994 Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium J. Bacteriol. 176 3598–3605

    PubMed  CAS  Google Scholar 

  • Laszlo, D. J., and B. L. Taylor. 1981 Aerotaxis in Salmonella typhimurium: Role of electron transport J. Bacteriol. 145 990–1001

    PubMed  CAS  Google Scholar 

  • Laszlo, D. J., B. L. Fandrich, A. Sivaram, B. Chance, and B. L. Taylor. 1984 Cytochrome o as a terminal oxidase and receptor for aerotaxis in Salmonella typhimurium J. Bacteriol. 159 663–667

    PubMed  CAS  Google Scholar 

  • Lee, A., J. L. O’Rourke, P. J. Barrington, and T. Trust. 1988 Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni:a mouse cecal model Infect. Immun. 51 536–546

    Google Scholar 

  • Lee, G. F., D. P. Dutton, and G. L. Hazelbauer. 1995a Identification of functionally important helical faces in transmembrane segments by scanning mutagenesis Proc. Natl. Acad. Sci. USA 92 5416–5420

    Article  PubMed  CAS  Google Scholar 

  • Lee, G. F., M. R. Lebert, A. A. Lilly, and G. L. Hazelbauer. 1995b Transmembrane signaling characterized in bacterial chemoreceptors by using sulfhydryl cross-linking in vivo Proc. Natl. Acad. Sci. USA 92 3391–3395

    Article  PubMed  CAS  Google Scholar 

  • Legnani-Fajardo, C., P. Zunino, C. Piccini, A. Allen, and D. Maskell. 1996 Defined mutants of Proteus mirabilis lacking flagella cause ascending urinary tract infection in mice Microb. Pathogen. 21 395–405

    Article  CAS  Google Scholar 

  • Lengeler, J. W., and K. Jahreis. 1996 Phosphotransferase systems or PTSs as carbohydrate transport and as signal tranduction systems In: W. N. Konings, H. R. Kaback, and J. S. Lolkema (Eds.) Handbook of Biological Physics Elsevier Science Amsterdam, The Netherlands 573–598

    Google Scholar 

  • Levit, M. N., Y. Liu, and J. B. Stock. 1998 Stimulus response coupling in bacterial chemotaxis: Receptor dimers in signalling arrays Molec. Microbiol. 30 459–466

    Article  CAS  Google Scholar 

  • Li, C., A. J. Boileau, C. Kung, and J. Adler. 1988 Osmotaxis in Escherichia coli Proc. Natl. Acad. Sci. USA 85 9451–9455

    Article  PubMed  CAS  Google Scholar 

  • Liaw, S. J., H. C. Lai, S. W. Ho, K. T. Luh, and W. B. Wang. 2000 Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol J. Med. Microbiol. 49 725–731

    PubMed  CAS  Google Scholar 

  • Liu, J., and J. S. Parkinson. 1989 Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis Proc. Natl. Acad. Sci. USA 86 8703–8707

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. Z., M. Dapice, and S. Khan. 1990 Ion selectivity of the Vibrio alginolyticus flagellar motor J. Bacteriol. 172 5236–5244

    PubMed  CAS  Google Scholar 

  • Lloyd, S. A., F. G. Whitby, D. F. Blair, and C. P. Hill. 1999 Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor Nature 400 472–475

    Article  PubMed  CAS  Google Scholar 

  • Lupas, A., and J. Stock. 1989 Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis J. Biol. Chem. 264 17337–17342

    PubMed  CAS  Google Scholar 

  • Lux, R., V. R. Munasinghe, F. Castellano, J. W. Lengeler, J. E. Corrie, and S. Khan. 1999 Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay Mol. Biol. Cell 10 1133–1146

    PubMed  CAS  Google Scholar 

  • Macnab, R. M. 1976 Examination of bacterial flagellation by dark-field microscopy J.Clin.Microbiol. 4 258–265

    PubMed  CAS  Google Scholar 

  • Macnab, R. M. 1977 Bacterial flagella rotating in bundles: A study in helical geometry Proc. Natl. Acad. Sci. USA 74 221–225

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., and D. J. DeRosier. 1988 Bacterial flagellar structure and function Can. J. Microbiol. 34 442–451

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M. 1992 Genetics and biogenesis of bacterial flagella Ann. Rev. Genet. 26 131–158

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M. 1996 Flagella and motility In: F. C. Neidhardt, R. I. Curtiss, J. L. Ingraham, E. C. C. Lin, G. Lowe, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (Eds.) Escherichia coli and Salmonella: Cellular and Molecular Biology ASM Press Washington DC 123–145

    Google Scholar 

  • Macnab, R. M. 1999 The bacterial flagellum: Reversible rotary propellor and type III export apparatus J. Bacteriol. 181 7149–7153

    PubMed  CAS  Google Scholar 

  • Maddock, J. R., and L. Shapiro. 1993 Polar location of the chemoreceptor complex in the Escherichia coli cell Science 259 1717–1723

    Article  PubMed  CAS  Google Scholar 

  • Maeda, K., Y. Imae, J.-I. Shioi, and F. Oosawa. 1976 Effect of temperature on motility and chemotaxis of Escherichia coli J. Bacteriol. 127 1039–1046

    PubMed  CAS  Google Scholar 

  • Mann, S., R. B. Frankel, and R. P. Blakemore. 1984 Structure, morphology and crystal growth of bacterial magnetite Nature 310 405–407

    Article  Google Scholar 

  • Manson, M. D., V. Blank, G. Brade, and C. F. Higgins. 1986 Peptide chemotaxis in E.coli involves the Tap signal transducer and the dipeptide permease Nature (London) 321 253–256

    Article  CAS  Google Scholar 

  • Marwan, W., W. Schäfer, and D. Oesterhelt. 1990 Signal transduction in Halobacterium depends on fumarate EMBO J. 9 355–362

    PubMed  CAS  Google Scholar 

  • Marwan, W., M. Alam, and D. Oesterhelt. 1991 Rotation and switching of the flagellar motor assembly in Halobacterium halobium J. Bacteriol. 173 1971–1977

    PubMed  CAS  Google Scholar 

  • Mathews, M. A., H. L. Tang, and D. F. Blair. 1998 Domain analysis of the FliM protein of Escherichia coli J. Bacteriol. 180 5580–5590

    PubMed  CAS  Google Scholar 

  • McBride, M. J., T. Köhler, and D. R. Zusman. 1992 Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior J. Bacteriol. 174 4246–4257

    PubMed  CAS  Google Scholar 

  • McBride, M. J., and D. R. Zusman. 1996 Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli FEMS Microbiol. Lett. 137 227–231

    Article  PubMed  CAS  Google Scholar 

  • McCarter, L., M. Hilmen, and M. Silverman. 1988 Flagellar dynamometer controls swarmer cell differentiation of Vibrio parahaemolyticus Cell 54 345–351

    Article  PubMed  CAS  Google Scholar 

  • McCarter, L. L. 1994a MotX, the channel component of the sodium-type flagellar motor J. Bacteriol. 176 5988–5998

    PubMed  CAS  Google Scholar 

  • McCarter, L. L. 1994b MotY, a component of the sodium-type flagellar motor J. Bacteriol. 176 4219–4225

    PubMed  CAS  Google Scholar 

  • McEvoy, M. M., A. C. Hausrath, G. B. Randolph, S. J. Remington, and F. W. Dahlquist. 1998 Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway Proc. Natl. Acad. Sci. USA 95 7333–7338

    Article  PubMed  CAS  Google Scholar 

  • McEvoy, M. M., A. Bren, M. Eisenbach, and F. W. Dahlquist. 1999 Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein fliM J. Molec. Biol. 289 1423–1433

    Article  PubMed  CAS  Google Scholar 

  • McNally, D. F., and P. Matsumura. 1991 Bacterial chemotaxis signaling complexes:Formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY Proc. Natl. Acad. Sci. USA 88 6269–6273

    Article  PubMed  CAS  Google Scholar 

  • Meister, M., G. Lowe, and H. C. Berg. 1987 The proton flux through the bacterial flagellar motor Cell 49 643–650

    Article  PubMed  CAS  Google Scholar 

  • Merz, A. J., and M. So. 2000a Interactions of pathogenic neisseriae with epithelial cell membranes Ann. Rev. Cell Dev. Biol. 16 423–457

    Article  CAS  Google Scholar 

  • Merz, A. J., M. So, and M. P. Sheetz. 2000b Pilus retraction powers bacterial twitching motility Nature 407 98–102

    Article  PubMed  CAS  Google Scholar 

  • Milburn, M. V., G. G. Prive, D. L. Milligan, W. G. Scott, J. I. Yeh, J. Jancarik, D. E. Koshland, Jr., and S. H. Kim. 1991 Three-dimensional structures of the ligand binding domain of the bacterial aspartate receptor with and without the ligand Science 254 1342–1347

    Article  PubMed  CAS  Google Scholar 

  • Milligan, D. L., and D. E. Koshland Jr. 1988 Site-directed cross-linking: Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis J. Biol. Chem. 263 6268–6275

    PubMed  CAS  Google Scholar 

  • Mimori-Kiyosue, Y., F. Vonderviszt, and K. Namba. 1997 Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism J. Molec. Biol. 270 222–237

    Article  PubMed  CAS  Google Scholar 

  • Minamino, T., and R. M. Macnab. 1999 Components of the Salmonella flagellar export apparatus and classification of export substrates J. Bacteriol. 181 1388–1394

    PubMed  CAS  Google Scholar 

  • Mitchell, J. G., L. Pearson, A. Bonazinga, S. Dillon, K. Khouri, and R. Paxinos. 1995 Long lag times and high velocities in the motility of natural assemblages of marine bacteria Appl. Environ. Microbiol. 61 877–882

    PubMed  CAS  Google Scholar 

  • Mobley, H. L., and R. Belas. 1995 Swarming and pathogenicity of Proteus mirabilis in the urinary tract Trends Microbiol. 3 280–284

    Article  PubMed  CAS  Google Scholar 

  • Mobley, H. L., R. Belas, V. Lockatell, G. Chippendale, A. L. Trifillis, D. E. Johnson, and J. W. Warren. 1996 Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection Infect. Immun. 64 5332–5340

    PubMed  CAS  Google Scholar 

  • Montrone, M., W. Marwan, H. Grunberg, S. Musseleck, C. Starostzik, and D. Oesterhelt. 1993 Sensory rhodopsin-controlled release of the switch factor fumarate in Halobacterium salinarium Molec. Microbiol. 10 1077–1085

    Article  CAS  Google Scholar 

  • Montrone, M., D. Oesterhelt, and W. Marwan. 1996 Phosphorylation-independent bacterial chemoresponses correlate with changes in the cytoplasmic level of fumarate J. Bacteriol. 178 6882–6887

    PubMed  CAS  Google Scholar 

  • Montrone, M., M. Eisenbach, D. Oesterhelt, and W. Marwan. 1998 Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate J. Bacteriol. 180 3375–3380

    PubMed  CAS  Google Scholar 

  • Morgan, D. G., C. Owen, L. A. Melanson, and D. J. DeRosier. 1995 Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices J. Molec. Biol. 249 88–110

    Article  PubMed  CAS  Google Scholar 

  • Morrison, T. B., and J. S. Parkinson. 1997 A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling J. Bacteriol. 179 5543–5550

    PubMed  CAS  Google Scholar 

  • Mowbray, S. L., and M. O. Sandgren. 1998 Chemotaxis receptors: A progress report on structure and function J. Struct. Biol. 124 257–275

    Article  PubMed  CAS  Google Scholar 

  • Mowbray, S. L. 1999 Bacterial chemoreceptors: Recent progress in structure and function Mol. Cells 9 115–118

    PubMed  CAS  Google Scholar 

  • Muramoto, K., and R. M. Macnab. 1998 Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella Molec. Microbiol. 29 1191–1202

    Article  CAS  Google Scholar 

  • Nachamkin, I., X.-H. Yang, and N. J. Stern. 1993 Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: Analysis with flagellar mutants Appl. Environ. Microbiol. 59 1269–1273

    PubMed  CAS  Google Scholar 

  • Nakamura, H., H. Yoshiyama, H. Takeuchi, T. Mizote, K. Okita, and T. Nakazawa. 1998 Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment Infect. Immun. 66 4832–4837

    PubMed  CAS  Google Scholar 

  • Namba, K., I. Yamashita, and F. Vonderviszt. 1989 Structure of the core and central channel of bacterial flagella Nature 343 648–654

    Article  Google Scholar 

  • Namba, K., and F. Vonderviszt. 1997 Molecular architecture of bacterial flagellum Q. Rev. Biophys. 30 1–65

    Article  PubMed  CAS  Google Scholar 

  • Namba, K. 2001 Roles of partly unfolded conformations in macromolecular self-assembly Genes to Cells 6 1–12

    Article  PubMed  CAS  Google Scholar 

  • Nambu, T., T. Minamino, R. M. Macnab, and K. Kutsukake. 1999 Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium J. Bacteriol. 181 1555–1561

    PubMed  CAS  Google Scholar 

  • Neimark, H. 1983 Mycoplasma and bacterial protein resembling contractile proteins: A review Yale J. Biol. Med. 56 419–423

    PubMed  CAS  Google Scholar 

  • Newton, A., and N. Ohta. 1990 Regulation of the cell division cycle and differentiation in bacteria Ann. Rev. Microbiol. 44 689–719

    Article  CAS  Google Scholar 

  • Nhieu, G. T., and P. J. Sansonetti. 1999 Mechanism of Shigella entry into epithelial cells Curr. Opin. Microbiol. 2 51–55

    Article  PubMed  CAS  Google Scholar 

  • Nickel, J. C., J. W. Costerton, R. J. McLean, and M. Olson. 1994 Bacterial biofilms: Influence on the pathogenesis, diagnosis and treatment of urinary tract infections J. Antimicrob. Chemother. 33, Suppl. A 31–41

    Article  PubMed  Google Scholar 

  • Nikaido, H., and M. H. Saier Jr. 1992 Transport proteins in bacteria: Common themes in their design Science 258 936–942

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, S. I., T. Nara, M. Homma, Y. Imae, and I. Kawagishi. 1997 Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine J. Bacteriol. 179 6573–6580

    PubMed  CAS  Google Scholar 

  • Nishiyama, S., T. Umemura, T. Nara, M. Homma, and I. Kawagishi. 1999 Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant Molec. Microbiol. 32 357–365

    Article  CAS  Google Scholar 

  • Oh, J. I., and S. Kaplan. 2000 Redox signaling: Globalization of gene expression EMBO J. 19 4237–4247

    Article  PubMed  CAS  Google Scholar 

  • O’Rear, J., L. Alberti, and R. M. Harshey. 1992 Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis or flagellar function J. Bacteriol. 174 6125–6137

    PubMed  Google Scholar 

  • O’Toole, J., D. L. Milton, and H. Wolf-Watz. 1996 Chemotactic motility is required for invasion of the host by fish pathogen Vibrio anguillarum Molec. Microbiol. 19 625–637

    Article  Google Scholar 

  • O’Toole, G. A., and R. Kolter. 1998 Flagellar and twitching moltility are necessary for Pseudomonas aeruginosa biofilm development Molec. Microbiol. 30 295–304

    Article  Google Scholar 

  • O’Toole, G., H. B. Kaplan, and R. Kolter. 2000 Biofilm formation as microbial development Ann. Rev. Microbiol. 54 49–79

    Article  Google Scholar 

  • Ottemann, K. M., W. Xiao, Y. K. Shin, and D. E. Koshland Jr. 1999 A piston model for transmembrane signaling of the aspartate receptor Science 285 1751–1754

    Article  PubMed  CAS  Google Scholar 

  • Overmann, J., C. Tuschak, J. M. Frostl, and H. Sass. 1998 The ecological niche of the consortium “Pelochromatium roseum” Arch. Microbiol. 169 120–128

    Article  PubMed  CAS  Google Scholar 

  • Packer, H. L., D. E. Gauden, and J. P. Armitage. 1996 The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli Microbiology 142 593–599

    Article  PubMed  CAS  Google Scholar 

  • Parales, R. E., J. L. Ditty, and C. S. Harwood. 2000 Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene Appl. Environ. Microbiol. 66 4098–4104

    Article  PubMed  CAS  Google Scholar 

  • Parke, D., L. N. Ornston, and E. W. Nester. 1987 Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens J. Bacteriol. 169 5336–5338

    PubMed  CAS  Google Scholar 

  • Pecher, A., I. Renner, and J. Lengeler. 1983 The phosphoenolpyruvate-dependent carbohydrate: Phosphotransferase system enzymes II, a new class of chemosensors in bacterial chemotaxis In: H. Sund and H. Veeger (Eds.) Mobility and Recognition in Cell Biology Walter de Gruyter Berlin, Germany 517–531

    Google Scholar 

  • Pfennig, N. 1968 Chromatium akenii (Thiorhodaceae) Göttingen Institut fur den Wissenschaftlichen Film 3–9

    Google Scholar 

  • Pitta, T., W. Godchaux III, and E. R. Leadbetter. 1993 Protein content of peptidoglycan of liquid-grown cells differs from that of surface-grown, gliding Cytophaga johnsonae Arch. Microbiol. 160 214–221

    CAS  Google Scholar 

  • Pitta, T. P., E. E. Sherwood, A. M. Kobel, and H. C. Berg. 1997 Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113 J. Bacteriol. 179 2524–2528

    PubMed  CAS  Google Scholar 

  • Poole, P. S., and J. P. Armitage. 1989 Role of metabolism in the chemotactic response of Rhodobacter sphaeroides to ammonia J. Bacteriol. 171 2900–2902

    PubMed  CAS  Google Scholar 

  • Postnova, T., O. G. Gomez-Duarte, and K. Richardson. 1996 Motility mutants of Vibrio cholerae 01 have reduced adherence in vitro to human small intestine epithelial cells as demonstrated by ELISA Microbiology 142 2767–2776

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K., S. R. Caplan, and M. Eisenbach. 1998 Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor J. Molec. Biol. 280 821–828

    Article  PubMed  CAS  Google Scholar 

  • Pratt, L. A., and R. Kolter. 1999 Genetic analyses of bacterial biofilm formation Curr. Opin. Microbiol. 2 598–603

    Article  PubMed  CAS  Google Scholar 

  • Puskas, A., E. P. Greenberg, S. Kaplan, and A. L. Schaefer. 1997 A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides J. Bacteriol. 179 7530–7537

    PubMed  CAS  Google Scholar 

  • Qi, Y., and J. Adler. 1989 Salt taxis in Escherichia coli bacteria and its lack in mutants Proc. Natl. Acad. Sci. USA 86 8358–8362

    Article  PubMed  CAS  Google Scholar 

  • Ragatz, L., Z.-Y. Jiang, C. E. Bauer, and H. Gest. 1995 Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum Arch. Microbiol. 163 1–6

    Article  PubMed  CAS  Google Scholar 

  • Rathman, M., P. de Lanerolle, H. Ohayon, P. Gounon, and P. Sansonetti. 2000 Myosin light chain kinase plays an essential role in S. flexneri dissemination J.Cell Sci. 113 3375–3386

    PubMed  CAS  Google Scholar 

  • Ravid, S., P. Matsumura, and M. Eisenbach. 1986 Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY Proc. Natl. Acad. Sci. USA 83 7157–7161

    Article  PubMed  CAS  Google Scholar 

  • Rebbapragada, A., M. S. Johnson, G. P. Harding, A. J. Zuccarelli, H. M. Fletcher, I. B. Zhulin, and B. L. Taylor. 1997 The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior Proc. Natl. Acad. Sci. USA 94 10541–10546

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer, A., K. Quon, and L. Shapiro. 1999 The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle J. Bacteriol. 181 2430–2439

    PubMed  CAS  Google Scholar 

  • Repaske, D. R., and J. Adler. 1981 Changes in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents J. Bacteriol. 145 1196–1208

    PubMed  CAS  Google Scholar 

  • Repik, A., A. Rebbapragada, M. S. Johnson, J. O. Haznedar, I. B. Zhulin, and B. L. Taylor. 2000 PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli Molec. Microbiol. 36 806–816

    Article  CAS  Google Scholar 

  • Rodriguez, A. M., and A. M. Spormann. 1999 Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus J. Bacteriol. 181 4381–4390

    PubMed  CAS  Google Scholar 

  • Romagnoli, S., A. Hochkoeppler, L. Damgaard, and D. Zannoni. 1997 The effect of respiration on the phototactic behavior of the purple nonsulfur bacterium Rhodospirillum centenum Arch. Microbiol. 167 99–105

    Article  CAS  Google Scholar 

  • Romagnoli, S., and J. P. Armitage. 1999 Role of the chemosensory pathways in transient changes in swimming speed of Rhodobacter sphaeroides induced by changes in photosynthetic electron transport J. Bacteriol. 181 34–39

    PubMed  CAS  Google Scholar 

  • Rosario, M. M., J. R. Kirby, D. A. Bochar, and G. W. Ordal. 1995 Chemotactic methylation and behavior in Bacillus subtilis: Role of two unique proteins, CheC and CheD Biochemistry 34 3823–3831

    Article  PubMed  CAS  Google Scholar 

  • Rosario, M. M., and G. W. Ordal. 1996 CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins Molec. Microbiol. 21 511–518

    Article  CAS  Google Scholar 

  • Ryu, W. S., R. M. Berry, and H. C. Berg. 2000 Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio Nature 403 444–447

    Article  PubMed  CAS  Google Scholar 

  • Sackett, M. J., J. P. Armitage, E. E. Sherwood, and T. P. Pitta. 1997 Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides J. Bacteriol. 179 6764–6768

    PubMed  CAS  Google Scholar 

  • Sager, B., and D. Kaiser. 1994 Intercellular C-signaling and the traveling waves of Myxococcus Genes Devel. 8 2793–2804

    Article  PubMed  CAS  Google Scholar 

  • Samatey, F. A., K. Imada, F. Vonderviszt, Y. Shirakihara, and K. Namba. 2000 Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals J. Struct. Biol. 132 106–111

    Article  PubMed  CAS  Google Scholar 

  • Sanders, D. A., B. L. Gillece-Castro, A. M. Stock, A. L. Burlingame, and D. E. Koshland Jr. 1989a Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY J. Biol. Chem. 264 21770–21778

    PubMed  CAS  Google Scholar 

  • Sanders, D. A., B. Mendez, and D. E. Koshland Jr. 1989b Role of the CheW protein in bacterial chemotaxis: Overexpression is equivalent to absence J. Bacteriol. 171 6271–6278

    PubMed  CAS  Google Scholar 

  • Sasaki, J., and J. L. Spudich. 1999 Proton circulation during the photocycle of sensory rhodopsin II Biophys. J. 77 2145–2152

    Article  PubMed  CAS  Google Scholar 

  • Schuster, S. C., and E. Baeuerlein. 1992 Location of the basal disk and a ringlike cytoplasmic structure, two additional structures of the flagellar apparatus of Wolinella succinogenes J. Bacteriol. 174 263–268

    PubMed  CAS  Google Scholar 

  • Schuster, S. C., R. V. Swanson, L. A. Alex, R. B. Bourret, and M. I. Simon. 1993 Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance Nature 365 343–347

    Article  PubMed  CAS  Google Scholar 

  • Scott, W. G., D. L. Milligan, M. V. Milburn, G. G. Privé, J. Yeh, D. E. Koshland Jr., and S. H. Kim. 1993 Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium J. Molec. Biol. 232 555–573

    Article  PubMed  CAS  Google Scholar 

  • Semmler, A. B., C. B. Whitchurch, and J. S. Mattick. 1999 A re-examination of twitching motility in Pseudomonas aeruginosa Microbiology 145 2863–2873

    PubMed  CAS  Google Scholar 

  • Shah, D. S., S. L. Porter, D. C. Harris, G. H. Wadhams, P. A. Hamblin, and J. P. Armitage. 2000a Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway Molec. Microbiol. 35 101–112

    Article  CAS  Google Scholar 

  • Shah, D. S., S. L. Porter, A. C. Martin, P. A. Hamblin, and J. P. Armitage. 2000b Fine tuning bacterial chemotaxis: Analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes EMBO J. 19 4601–4613

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L., D. Kaiser, and R. Losick. 1993 Development and behavior in bacteria Cell 73 835–836

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, M. J., I. Chakrabarti, and D. E. Koshland Jr. 1995 Contributions made by individual methylation sites of the Escherichia coli aspartate receptor to chemotactic behavior Proc. Natl. Acad. Sci. USA 92 1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C. H., A. M. Ashby, A. Brown, C. Royal, and G. J. Loake. 1988 virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone Molec. Microbiol. 2 413–417

    Article  CAS  Google Scholar 

  • Shi, W., F. K. Ngok, and D. R. Zusman. 1996 Cell density regulates cellular reversal frequency in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 93 4142–4146

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, T. S., N. Le Novere, M. D. Levin, A. J. Beavil, B. J. Sutton, and D. Bray. 2000 Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis Nature Cell Biology 2 792–796

    Article  PubMed  CAS  Google Scholar 

  • Shukla, D., and P. Matsumura. 1995 Mutations leading to altered CheA binding cluster on a face of CheY J. Biol. Chem. 270 24414–24419

    Article  PubMed  CAS  Google Scholar 

  • Sockett, H., S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab. 1992 Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium J. Bacteriol. 174 793–806

    PubMed  CAS  Google Scholar 

  • Sourjik, V., and R. Schmitt. 1998a Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti Biochemistry 37 2327–2335

    Article  PubMed  CAS  Google Scholar 

  • Sourjik, V., W. Sterr, J. Platzer, I. Bos, M. Haslbeck, and R. Schmitt. 1998b Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome Gene 223 283–290

    Article  PubMed  CAS  Google Scholar 

  • Sourjik, V., and H. C. Berg. 2000 Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions Molec. Microbiol. 37 740–751

    Article  CAS  Google Scholar 

  • Spiro, P. A., J. S. Parkinson, and H. G. Othmer. 1997 A model of excitation and adaptation in bacterial chemotaxis Proc. Natl. Acad. Sci. USA 94 7263–7268

    Article  PubMed  CAS  Google Scholar 

  • Spormann, A. M. 1999 Gliding motility in bacteria: Insights from studies of Myxococcus xanthus Microbiol. Molec. Biol. Rev. 63 621–641

    CAS  Google Scholar 

  • Sprenger, W. W., W. D. Hoff, J. P. Armitage, and K. J. Hellingwerf. 1993 The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein J. Bacteriol. 175 3096–3104

    PubMed  CAS  Google Scholar 

  • Springer, M. S., B. Zanolari, and P. A. Pierzchala. 1982 Ordered methylation of the methyl-accepting chemotaxis proteins of Escherichia coli J. Biol. Chem. 257 6861–6866

    PubMed  CAS  Google Scholar 

  • Spudich, J. A. 1994 Protein-protein interaction converts a proton pump into a sensory receptor Cell 79 747–750

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. L. 1998 Variations on a molecular switch: transport and sensory signalling by archael rhodopsins Molec. Microbiol. 28 1051–1058

    Article  CAS  Google Scholar 

  • Stahlberg, A., S. C. Schuster, M. Bauer, E. Baeuerlein, R. Zhao, T. S. Reese, and S. Khan. 1995 Conserved machinery of the bacterial flagellar motor Biophys. J. 68 (Suppl.) 168S–172S

    Google Scholar 

  • Steinbüchel, A., and P. Schubert. 1989 Expression of the Alcaligenes eutrophus poly(β-hydroxybutyric acid)-synthetic pathway in Pseudomonas sp Arch. Microbiol. 153 101–104

    Article  Google Scholar 

  • Stewart, R. C., and F. W. Dahlquist. 1988 N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli J. Bacteriol. 170 5728–5738

    PubMed  CAS  Google Scholar 

  • Stock, A. M., and J. B. Stock. 1987 Purification and characterization of the CheZ protein of bacterial chemotaxis J. Bacteriol. 169 3301–3311

    PubMed  CAS  Google Scholar 

  • Stock, A. M., J. M. Mottonen, J. B. Stock, and C. E. Schutt. 1989 Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis Nature 337 745–749

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., and M. G. Surette. 1996 Chemotaxis In: F. C. Neidhardt, R. I. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (Eds.) Escherichia coli and Salmonella:Cellular and Molecular Biology ASM Press Washington DC 1103–1129

    Google Scholar 

  • Stock, A. M. 1997 Energy sensors for aerotaxis in Escherichia coli: Something old, something new Proc. Natl. Acad. Sci. USA 94 10487–10489

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. 1999 Sensitivity, cooperativity and gain in chemotaxis signal transduction Trends Microbiol. 7 1–4

    Article  PubMed  CAS  Google Scholar 

  • Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000 Two-component signal transduction Ann. Rev. Biochem. 69 183–215

    Article  PubMed  CAS  Google Scholar 

  • Stolz, J. F., S.-B. R. Chang, and J. L. Kirschvink. 1986 Magnetotactic bacteria and single domain magnetite in hemipelagic sediments Nature 321 849–851

    Article  Google Scholar 

  • Storch, K. F., J. Rudolph, and D. Oesterhelt. 1999 Car: A cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum EMBO J. 18 1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., K. Yonekura, K. Murata, T. Hirai, K. Oosawa, and K. Namba. 1998 A structural feature in the central channel of the bacterial flagellar FliF ring complex is implicated in type III protein export J. Struct. Biol. 124 104–114

    Article  PubMed  CAS  Google Scholar 

  • Szymanski, C. M., M. King, M. Haardt, and G. D. Armstrong. 1995 Campylobacter jejuni motility and invasion of Caco-2 cells Infect. Immun. 63 4295–4300

    PubMed  CAS  Google Scholar 

  • Tawa, P., and R. C. Stewart. 1994 Mutational activation of CheA, the protein kinase in the chemotaxis system of Escherichia coli J. Bacteriol. 176 4210–4218

    PubMed  CAS  Google Scholar 

  • Thomas, D. R., D. G. Morgan, and D. J. DeRosier. 1999 Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor Proc. Natl. Acad. Sci. USA 96 10134–10139

    Article  PubMed  CAS  Google Scholar 

  • Toker, A. S., and R. M. Macnab. 1997 Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY J. Molec. Biol. 273 623–634

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, S., and D. J. DeRosier. 1987a Three-dimensional structure of the frozen-hydrated flagellar filament: The left-handed filament of Salmonella typhimurium J. Molec. Biol. 195 581–601

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, S., D. J. DeRosier, and R. M. Macnab. 1987b Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament J. Molec. Biol. 195 603–620

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, 6S., and D. J. DeRosier. 1991 A molecular switch: Subunit rotations involved in the right-handed to left-handed transitions of Salmonella typhimurium flagellar filaments J. Molec. Biol. 220 67–77

    Article  PubMed  CAS  Google Scholar 

  • Tran-Van, N. G., E. Caron, A. Hall, and P. J. Sansonetti. 1999 IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells EMBO J. 18 3249–3262

    Article  Google Scholar 

  • Tran-Van, N., R. Bourdet-Sicard, G. Dumenil, A. Blocker, and P. J. Sansonetti. 2000 Bacterial signals and cell responses during Shigella entry into epithelial cells Cell. Microbiol. 2 187–193

    Article  Google Scholar 

  • Turner, L., W. S. Ryu, and H. C. Berg. 2000 Real-time imaging of fluorescent flagellar filaments J. Bacteriol. 182 2793–2801

    Article  PubMed  CAS  Google Scholar 

  • Uedaira, H., H. Morii, M. Ishimura, H. Taniguchi, K. Namba, and F. Vonderviszt. 1999 Domain organization of flagellar hook protein from Salmonella typhimurium FEBS Lett. 445 126–130

    Article  PubMed  CAS  Google Scholar 

  • Ueno, T., K. Oosawa, and S. I. Aizawa. 1994 Domain structures of the MS ring component protein (FliF) of the flagellar basal body of Salmonella typhimurium J. Molec. Biol. 236 546–555

    Article  PubMed  CAS  Google Scholar 

  • Vande, B. A., M. Lambrecht, and J. Vanderleyden. 1998 Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense Microbiology 144 2599–2606

    Article  Google Scholar 

  • Vogler, A. P., M. Homma, V. M. Irikura, and R. M. Macnab. 1991 Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits J. Bacteriol. 173 3564–3572

    PubMed  CAS  Google Scholar 

  • Volz, K., and P. Matsumura. 1991 Crystal structure of Escherichia coli CheY refined at 1.7 Å resolution J. Biol. Chem. 266 15511

    PubMed  CAS  Google Scholar 

  • Vonderviszt, F., S.-I. Aizawa, and K. Namba. 1991 Role of the disordered terminal regions of flagellin in filament formation and stability J. Molec. Biol. 221 1461–1474

    Article  PubMed  CAS  Google Scholar 

  • Wadhams, G. H., A. C. Martin, and J. P. Armitage. 2000 Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides Molec. Microbiol. 36 1222–1233

    Article  CAS  Google Scholar 

  • Wagenknecht, T., D. J. DeRosier, S.-I. Aizawa, and R. M. Macnab. 1982 Flagellar hook structures of Caulobacter and Salmonella and their relationship to filament structure J. Molec. Biol. 162 69–87

    Article  PubMed  CAS  Google Scholar 

  • Wall, D., and D. Kaiser. 1999 Type IV pili and cell motility Molec. Microbiol. 32 1–10

    Article  CAS  Google Scholar 

  • Ward, M. J., and D. R. Zusman. 1997 Regulation of directed motility in Myxococcus xanthus Molec. Microbiol. 24 885–893

    Article  CAS  Google Scholar 

  • Ward, M. J., K. C. Mok, D. P. Astling, H. Lew, and D. R. Zusman. 1998a An ABC transporter plays a developmental aggregation role in Myxococcus xanthus J. Bacteriol. 180 5697–5703

    PubMed  CAS  Google Scholar 

  • Ward, M. J., K. C. Mok, and D. R. Zusman. 1998b Myxococcus xanthus displays Frz-dependent chemokinetic behavior during vegetative swarming J. Bacteriol. 180 440–443

    PubMed  CAS  Google Scholar 

  • Ward, M. J., and D. R. Zusman. 2000 Developmental aggregation and fruiting body formation in the gliding bacterium Myxococcus xanthus In: Y. V. Brun and L. J. Shimkets (Eds.) Prokaryotic Development ASM Press Washington DC 243–262

    Google Scholar 

  • Wassenaar, T. M., B. A. M. Van der Zeijst, R. Ayling, and D. G. Newell. 1993 Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression J.Gen.Microbiol. 139 1171–1175

    Article  PubMed  CAS  Google Scholar 

  • Waterbury, J. B., J. M. Willey, D. G. Franks, F. W. Valois, and S. W. Watson. 1985 A cyanobacterium capable of swimming motility Science 230 74–76

    Article  PubMed  CAS  Google Scholar 

  • Watnick, P. I., and R. Kolter. 1999 Steps in the development of a Vibrio cholerae El Tor biofilm Molec. Microbiol. 34 586–595

    Article  CAS  Google Scholar 

  • Watnick, P., and R. Kolter. 2000 Biofilm, city of microbes J. Bacteriol. 182 2675–2679

    Article  PubMed  CAS  Google Scholar 

  • Watnick, P. I., C. M. Lauriano, K. E. Klose, L. Croal, and R. Kolter. 2001 The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139 Molec. Microbiol. 39 223–235

    Article  CAS  Google Scholar 

  • Watson, A. A., R. A. Alm, and J. S. Mattick. 1996 Identification of a gene, pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa Gene 180 49–56

    Article  PubMed  CAS  Google Scholar 

  • Welch, M., K. Oosawa, S.-I. Aizawa, and M. Eisenbach. 1994 Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM Biochemistry 33 10470–10476

    Article  PubMed  CAS  Google Scholar 

  • Welch, M., N. Chinardet, L. Mourey, C. Birck, and J. P. Samama. 1998 Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY Nature Structural Biology 5 25–29

    Article  PubMed  CAS  Google Scholar 

  • West, A. H., E. Martinez-Hackert, and A. M. Stock. 1995 Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB J. Molec. Biol. 250 276–290

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, R. T., J. W. Gober, and L. Shapiro. 1998 Protein localization during the Caulobacter crescentus cell cycle Curr. Opin. Microbiol. 1 636–642

    Article  PubMed  CAS  Google Scholar 

  • Wilson, L. M., and G. T. Macfarlane. 1996 Cytotoxicity, adhesion and invasion of Clostridium septicum in cultured human epithelial cells (CACO-2, HEp-2): Pathological significance of swarm cell differentiation Anaerobe 2 71–79

    Article  Google Scholar 

  • Wu, J., A. K. Benson, and A. Newton. 1995 Global regulation of a δ54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD J. Bacteriol. 177 3241–3250

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., and Y. Imae. 1993 Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol Proc. Natl. Acad. Sci. USA 90 217–221

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, I., K. Hasegawa, H. Suzuki, F. Vonderviszt, K. Y. Mimori, and K. Namba. 1998 Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction [published erratum appears in Nature Structural Biology 1998, July 5(7):612] Nature Structural Biology 5 125–132

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Y. Geng, D. Xu, H. B. Kaplan, and W. Shi. 1998 A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility Molec. Microbiol. 30 1123–1130

    Article  CAS  Google Scholar 

  • Yao, R., D. H. Burr, and P. Guerry. 1997 CheY-mediated modulation of Campylobacter jejuni virulence Molec. Microbiol. 23 1021–1031

    Article  CAS  Google Scholar 

  • Yoshiyama, H., T. Mizote, H. Nakamura, K. Okita, and T. Nakazawa. 1998 Chemotaxis of Helicobacter pylor: An urease-independent response J. Gastroenterol. 33, Suppl. 10 1–5

    PubMed  Google Scholar 

  • Zhang, W., A. Brooun, J. McCandless, P. Banda, and M. Alam. 1996 Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins Proc. Natl. Acad. Sci. USA 93 4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Zhao, R., C. D. Amsler, P. Matsumura, and S. Khan. 1996a FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies J. Bacteriol. 178 258–265

    PubMed  CAS  Google Scholar 

  • Zhao, R., N. Pathak, H. Jaffe, T. S. Reese, and S. Khan. 1996b FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body J. Molec. Biol. 261 195–208

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X. Y., and J. B. Sinclair. 1996 Chemotactic response of Bacillus megaterium B153-2-2 to soybean root and seed exudates Physiol. Molec. Plant Pathol. 48 21–35

    Article  CAS  Google Scholar 

  • Zhou, H. J., D. F. Lowry, R. V. Swanson, M. I. Simon, and F. W. Dahlquist. 1995 NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: Assignments, secondary structure, general fold, and backbone dynamics Biochemistry 34 13858–13870

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., and D. F. Blair. 1997a Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor J. Molec. Biol. 273 428–439

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., and F. W. Dahlquist. 1997b Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR Biochemistry 36 699–710

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., S. A. Lloyd, and D. F. Blair. 1998a Electrostatic interactions between rotor and stator in the bacterial flagellar motor Proc. Natl. Acad. Sci. USA 95 6436–6441

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., L. L. Sharp, H. L. Tang, S. A. Lloyd, S. Billings, T. F. Braun, and D. F. Blair. 1998b Function of protonatable residues in the flagellar motor of Escherichia coli: A critical role for Asp 32 of MotB J. Bacteriol. 180 2729–2735

    PubMed  CAS  Google Scholar 

  • Zhou, D., M. S. Mooseker, and J. E. Galan. 1999 Role of the S. typhimurium actin-binding protein SipA in bacterial internalization Science 283 2092–2095

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., J. Rebello, P. Matsumura, and K. Volz. 1997a Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106 J. Biol. Chem. 272 5000–5006

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., K. Volz, and P. Matsumura. 1997b The CheZ-binding surface of CheY overlaps the CheA-and FliM-binding surfaces J. Biol. Chem. 272 23758–23764

    Article  PubMed  CAS  Google Scholar 

  • Zhulin, I. B., and J. P. Armitage. 1992 The role of taxis in the ecology of Azospirillum Symbiosis 13 199–206

    Google Scholar 

  • Zhulin, I. B., E. H. Rowsell, M. S. Johnson, and B. L. Taylor. 1997 Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium J. Bacteriol. 179 3196–3201

    PubMed  CAS  Google Scholar 

  • Zimmer, M. A., J. Tiu, M. A. Collins, and G. W. Ordal. 2000 Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation J. Biol. Chem. 275 24264–24272

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Armitage, J. (2006). Bacterial Behavior. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_5

Download citation

Publish with us

Policies and ethics