Skip to main content

Tracer Technique

  • Reference work entry
Handbook of Nuclear Chemistry

1 Radioactive Tracers

1.1 Principles of radioactive tracer technique

The fundamental principle of the radioactive tracers is that the chemical behavior of radioactive isotopes is identical with that of their stable isotopes in any chemical process. Strictly speaking, the difference in atomic mass of radioactive and stable isotopes gives rise to a slight difference in both chemical reaction rate and equilibrium constant. This is the isotope effect (see Chapter 4 in Volume 2), which forms the basis of the isotope separation (see Chapter 5 in Volume 5). Except for very light elements, however, the isotope effect is negligibly small. This makes the isotope separation very laborious work requiring manifold repetition of a certain process. In ordinary tracer experiments, the isotope effect comes into question only in case of tritium 3H, which has an atomic mass approximately three times larger than that of the main stable isotope 1H. Even in 3H, however, the isotope effect turns out to be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 The error estimation is based on the rules of the error propagation as well as on the (reasonable) assumption that the counts N and Nbg follow Poisson statistics (see Chapter 7 in Volume 1).

References to Tracer Technique

  • AMBE, S., CHEN, S. Y., OHKUBO, Y., KOBAYASHI, Y., IWAMOTO, M., YANOKURA, M., AMBE, F., 1991, Chem. Lett., 149.

    Google Scholar 

  • AMBE, S., CHEN, S. Y., OHKUBO, Y., KOBAYASHI, Y., MAEDA, H., IWAMOTO, M., YANOKURA, M., TAKEMATSU, N., AMBE, F., 1995, J. Radioanal. Nucl. Chem., 195, 297.

    Article  CAS  Google Scholar 

  • AMBE, F., 2000, J. Radioanal. Nucl. Chem., 243, 21.

    Article  CAS  Google Scholar 

  • AMBE, S., OZAKI, T., WEGINWAR, R. G., ENOMOTO, S., AMBE, F., 2001, Radiochim. Acta, 89, 63.

    CAS  Google Scholar 

  • AMEMIYA, Y., MIYAHARA, J., 1988, Nature, 336, 89.

    Article  CAS  Google Scholar 

  • ARMSTRONG, W. D., SCHUBERT, J., 1947, Science, 106, 403.

    CAS  Google Scholar 

  • ARNSTEIN, H. R. V., BENTLEY, R., 1950, Nucleonics, 6, No. 6, 11.

    CAS  Google Scholar 

  • BASSHAM, J. A., CALVIN, M., 1957, The Path of Carbon in Photosynthesis (New York: Prentice-Hall).

    Google Scholar 

  • BENSON, A. A., BASSHAM, J. A., CALVIN, M., GOODALE, T. C., HAAS, V. A., STEPKA, W., 1950, J. Am. Chem. Soc., 72, 1710.

    Article  CAS  Google Scholar 

  • BLACK, C., JORIS, G. G., TAYLOR, H. S., 1948, J. Chem. Phys., 16, 537.

    Article  CAS  Google Scholar 

  • BRAUN, T., TÖLGYESSY, J., 1967, Radiometric Titrations, International Series of Monographs in Analytical Chemistry, Vol. 29, (New York: Pergamon).

    Google Scholar 

  • CHARLTON, J. S., (editor), 1986, Radioisotope Techniques for Problem Solving in Industrial Process Plants (Houston: Gulf Publishing Co.).

    Google Scholar 

  • CHOPPIN, G. R., LILJENZIN, J.-O., RYDBERG, J., 2002, Radiochemistry and Nuclear Chemistry, 3rd edition (Woburn: Butterworth-Heinemann).

    Google Scholar 

  • CONWAY, D., LIBBY, W. F., 1958, J. Am. Chem. Soc., 80, 1077.

    Article  CAS  Google Scholar 

  • COWLEY, W. E., LOTT, B., BROWN, S., 1966, Chem. Engr. (London), 204, 345.

    Google Scholar 

  • DODSON, R. W., 1950, J. Am. Chem. Soc., 72, 3315.

    Article  CAS  Google Scholar 

  • EGAWA, C., TAKAHASHI, Y., ENOMOTO, S., HIRUNUMA, R., SHIMIZU, H., 2001, RIKEN Review, 35, 96.

    CAS  Google Scholar 

  • ELVING, P. J., (editor), 1986, Treatise on Analytical Chemistry, Part 1: Theory and Practice, Vol. 14, Section K, Nuclear Activation and Radioisotopic Methods of Analysis (New York: John Wiley and Sons).

    Google Scholar 

  • ENOMOTO, S., KAWAKAMI, Y., SENOO, M., IMAHASHI, T., TACHIKAWA, N., TOMINAGA, H., 1975, Int. J. Appl. Radiat. Isot., 26, 671.

    Article  CAS  Google Scholar 

  • FERRONSKY, V., GUIZERIX, J., LEONHARDT, J., NIEMI, A., PRZEWLOCKI, K., SEVEL, T., (editors), 1990, Guidebook on Radioisotope Tracers in Industry (Wien: International Atomic Energy Agency).

    Google Scholar 

  • FÖLDIÁK, G., (editor), 1986, Industrial Applications of Radioisotopes (Amsterdam: Elsevier).

    Google Scholar 

  • GUILLAUMONT, R., ADLOFF, J. P., PENELOUX, A., 1989, Radiochim. Acta, 46, 169.

    CAS  Google Scholar 

  • HEVESY, G., PANETH, F., 1913, Z. Anorg. Chem., 82, 323.

    Article  Google Scholar 

  • HEVESY, G., OBRUTSHEVA, A., 1925, Nature, 115, 674.

    Google Scholar 

  • HEVESY, G., SEITH, W., 1929, Z. Physik, 56, 790, 869.

    Article  Google Scholar 

  • HUGHES, E. D., JULIUSBURGER, F., MASTERMAN, S., TOPLEY, B., WEISS, J., 1935, J. Chem. Soc., 1525.

    Google Scholar 

  • JORIS, G. G., TAYLOR, H. S., 1948, J. Chem. Phys., 16, 45.

    Article  CAS  Google Scholar 

  • LIESER, K. H., 1957, Z. Anorg. Allg. Chem., 292, 97.

    Article  CAS  Google Scholar 

  • LIESER, K. H., 2001, Nuclear and Radiochemistry, 2nd revised edition (Weinheim: Wiley-VCH).

    Google Scholar 

  • LIU, Y., GUO, Z., LIU, X., QU, T., XIE, J., 1994, Pure Appl. Chem., 66, 305.

    CAS  Google Scholar 

  • LOGAN, S. R., 1990, J. Chem. Educ., 67, 371.

    Article  CAS  Google Scholar 

  • MYERS, O. E., KENNEDY, J. W., 1950, J. Am. Chem. Soc., 72, 897.

    Article  CAS  Google Scholar 

  • PANETH, F., VORWERK, W., 1922, Z. Physik. Chem., 101, 445.

    CAS  Google Scholar 

  • QAIM, S. M., 1982, Radiochim. Acta, 30, 147.

    CAS  Google Scholar 

  • ROBERTS, T. R., 1979, Radiochromatography, in The Chromatography and Electrophoresis of Radiolabelled Compounds (Amsterdam: Elsevier).

    Google Scholar 

  • ROPP, G. A., NEVILLE, O. K., 1951, Nucleonics, 9, No. 2, 22.

    CAS  Google Scholar 

  • RUZICKA, J., STARY, J., 1968, Substoichiometry in Radiochemical Analysis (International Series of Monographs in Analytical Chemistry, Vol. 30), (New York: Pergamon)

    Google Scholar 

  • SILVERMAN, J., DODSON, R. W., 1952, J. Phys. Chem., 56, 846.

    Article  Google Scholar 

  • STARY, J., RUZICKA, J., 1976, Substoichiometric analytical methods, in Compr. Anal. Chem. 7, edited by G. Svehla (Amsterdam: Elsevier) p. 207.

    Google Scholar 

  • SUEKI, K., KIKUCHI, K., AKIYAMA, K., SAWA, T., KATADA, M., AMBE, S., AMBE, F., NAKAHARA, H., 1999, Chem. Phys. Lett., 300, 140.

    Article  CAS  Google Scholar 

  • SUTIN, N., 1962, Ann. Rev. Nucl. Sci., 12, 285.

    Article  CAS  Google Scholar 

  • TAMANO, H., ENOMOTO, S., HIRUNUMA, R., TAKEDA, A., 2001, RIKEN Review, 35, 57.

    CAS  Google Scholar 

  • TAUBE, H., 1952, Chem. Rev., 50, 69.

    Article  CAS  Google Scholar 

  • TÖLGYESSY, J., BRAUN, T., 1972, Isotope Dilution Analysis (Oxford: Pergamon Press).

    Google Scholar 

  • WAHL, A. C., BONNER, N. A., 1951, Radioactivity Applied to Chemistry (New York: John Wiley and Sons).

    Google Scholar 

  • WATERS, S. L., SILVESTER, D. J., 1982, Radiochim. Acta, 30, 163.

    CAS  Google Scholar 

  • WILSON, J. N., DICKINSON, R. G., 1937, J. Am. Chem. Soc., 59, 1358.

    Article  CAS  Google Scholar 

  • ZIMENS, K. E., 1937, Z. Phys. Chem., B37, 231.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

(2003). Tracer Technique. In: Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-387-30682-X_29

Download citation

  • DOI: https://doi.org/10.1007/0-387-30682-X_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-1305-8

  • Online ISBN: 978-0-387-30682-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics