Skip to main content

Global Order-Value Optimization by means of a Multistart Harmonic Oscillator Tunneling Strategy

  • Chapter
Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 84))

Summary

The OVO (Order-Value Optimization) problem consists in the min-imization of the Order-Value function f(x), defined by \( f\left( x \right) = f_{i_p \left( x \right)} \left( x \right) \), where \( f_{i_1 \left( x \right)} \left( x \right) \leqslant ... \leqslant f_{i_m \left( x \right)} \left( x \right) \). The functions f1,..., fm are defined on Ω ⊂ ℝn and p is an integer between 1 and m. When x is a vector of portfolio positions and fi(x) is the predicted loss under the scenario i, the Order-Value function is the discrete Value-at-Risk (VaR) function, which is largely used in risk evaluations. The OVO problem is continuous but nonsmooth and, usually, has many local minimizers. A local method with guaranteed convergence to points that satisfy an optimality condi-tion was recently introduced by Andreani, Dunder and Martinez. The local method must be complemented with a global minimization strategy in order to be effective when m is large. A global optimization method is defined where local minimizations are improved by a tunneling strategy based on the harmonic oscillator initial value problem. It will be proved that the solution of this initial value problem is a smooth and dense trajectory if Ω is a box. An application of OVO to the problem of find-ing hidden patterns in data sets that contain many errors is described. Challenging numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Andreani, C. Dunder, and J. M. Martinez. Nonlinear-Programming reformulation of the Order-Value Optimization problem. Technical Report MCDO 22/05/01, Department of Applied Mathematics, University of Campinas, 2001. To appear in Mathematical Methods of Operations Research (2005).

    Google Scholar 

  2. R. Andreani, C. Dunder, and J. M. Martinez. Order-Value Optimization: for-mulation and solution by means of a primal Cauchy method. Mathematical Methods of Operations Research, 58:387–399, 2003.

    Article  MathSciNet  Google Scholar 

  3. R. Biloti, L. T. Santos, and M. Tygel. Multi-parametric traveltime inversion. Stud. geophysica et geodaetica, 46:177–192, 2002.

    Article  Google Scholar 

  4. A. R. Butz. Space filling curves and mathematical programming. Inform. Con-trol, 12(4):314–330, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. R. Butz. Alternative algorithm for Hilbert’s space filling curve. IEEE Trans. Computers, C-20(4):424–426, 1971.

    Google Scholar 

  6. E. Cam and J. Y. Monnat. Stratification based on reproductive state reveals contrasting patterns of age-related variation in demographic parameters in the kittiwake. OIKOS, 90:560–574, 2000.

    Article  Google Scholar 

  7. L. L. Cavalli-Sforza. Genes, peoples, and languages. Proceedings of the National Academy of Sciences of the United States of America, 94:7719–7724, 1997.

    Article  Google Scholar 

  8. A. Dinklage and C. Wilke. Spatio-temporal dynamics of hidden wave modes in a dc glow discharge plasma. Physics Letters A, 277:331–338, 2000.

    Article  Google Scholar 

  9. X. Espadaler and C. Gómez. The species body-size distribution in Iberian ants is parameter independent. Vie et Milieu, 52:103–107, 2002.

    Google Scholar 

  10. V. P. Gergel, L. G. Strongin, and R. G. Strongin. The vicinity method in pattern recognition. Engineering Cybernetics. (Transl. from Izv. Acad. Nauk USSR, Techn, Kibernetika 4:14–22, 1987).

    Google Scholar 

  11. R. Gronner and L. Manheim. Hidden patterns. Arch. Gen. Psychiat., 17:248, 1967.

    Google Scholar 

  12. J. Haag. Oscillatory Motions. Wadsworth, Belmont, California, 1962.

    Google Scholar 

  13. E. Hewitt and K. A. Ross. Abstract Harmonic Analysis I. Springer-Verlag, Berlin, 1963.

    Google Scholar 

  14. P. J. Huber. Robust Statistics. Wiley, New York, 1981.

    Google Scholar 

  15. P. Jorion. Value at Risk: the new benchmark for managing financial risk. Mc Graw-Hill, New York, 2nd edition, 2001.

    Google Scholar 

  16. K. P. Joshi, A. Joshi, and Y. Yesha. On using a warehouse to analyze web logs. Distributed and Parallel Databases, 13:161–180, 2003.

    Article  Google Scholar 

  17. H. C. Koh and S. K. Leong. Data mining applications in the context of casemix. Annals Academy of Medicine Singapore, 30:41–49, 2001.

    Google Scholar 

  18. J. Kropp. A neural network approach to the analysis of city systems. Applied Geography, 18:83–96, 1998.

    Article  Google Scholar 

  19. A. V. Levy and A. Montalvo. The tunneling algorithm for the global minimiza-tion of functions. SIAM J. Sci. Stat. Comp., 6:15–29, 1985.

    Article  MathSciNet  Google Scholar 

  20. J. Mann, R. Jager, T. Muller, G. Hocht, and P. Hubral. Common-reflection-surface stack — a real data example. Journal of Applied Geophysics, 42,3–4:301–318, 1999.

    Article  Google Scholar 

  21. D. L. Markin and R. G. Strongin. A method for solving multi-extremal problems with non-convex constraints, that uses a priori information about estimates of the optimum. U.S.S.R. Comput. Maths. Math. Phys., 27(l):33–39, 1987. Pergamon Press 1988 (Zh. vychisl. Mat. mat. Fiz. 27(l):52-62, 1987).

    Article  MathSciNet  Google Scholar 

  22. J. M. Martinez. Inexact restoration: advances and perspectives. Invited talk at Workshop on Control and Optimization. Erice, Italy, July, 2001.

    Google Scholar 

  23. J. M. Martinez and E. A. Pilotta. Inexact restoration methods for nonlinear programming: advances and perspectives. To appear in Optimization and Con-trol with applications, edited by L. Q. Qi, K. L. Teo and X. Q. Yang. Kluwer Academic Publishers.

    Google Scholar 

  24. M. May and L. Ragia. Spatial subgroup discovery applied to the analysis of vegetation data. Lecture Notes in Artificial Intelligence, 2569:49–61, 2002.

    Google Scholar 

  25. D. V. Nichita, S. Gomez, and E. Luna-Ortiz. Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method. Comput. Chem. Eng., 26:1703–1724, 2002.

    Article  Google Scholar 

  26. D. V. Nichita, S. Gomez, and E. Luna-Ortiz. Multiphase equilibria calculation by direct minimization of Gibbs free energy using the tunneling global optimiza-tion method. J. Can. Petrol. Technol., 43:13–46, 2004.

    Google Scholar 

  27. N. H. Pronko and L. Manheim. Hidden patterns — Studies in psychoanalitic literary criticism. Psychol. Rec., 17:283–&, 1967.

    Google Scholar 

  28. D. Romero, C. Barron, and S. Gomez. The optimal geometry of Lennard-Jones clusters: 148–309. Comput. Phys. Commun., 123:87–96, 1999.

    Article  Google Scholar 

  29. P. Street. The logic and limits of “plant loyalty”: Black workers, white labor, and corporate racial paternalism in Chicago’s stockyards, 1916–1940. Journal of Social History, 29:659–&, 1996.

    Google Scholar 

  30. R. G. Strongin. On the convergence of an algorithm for finding a global ex-tremum. Engineering Cybernetics, 11:549–555, 1973.

    MathSciNet  Google Scholar 

  31. R. G. Strongin. Numerical Methods for Multi-extremal Problems. Nauka, Moscow, 1978. (in Russian).

    Google Scholar 

  32. R. G. Strongin. Numerical methods for multi-extremal nonlinear programming problems with nonconvex constraints. In V. F. Demyanov and D. Pallaschke, eds., Lecture Notes in Economics and Mathematical Systems, 225:278–282, 1984. Proceedings 1984. Springer-Verlag. IIASA, Laxenburg/Austria 1985.

    Google Scholar 

  33. R. G. Strongin. Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves. Journal of Global Op-timization, 2:357–378, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. G. Strongin and D. L. Markin. Minimization of multi-extremal functions with nonconvex constraints. Cybernetics, 22(4):486–493, 1986. Translated from Russian. Consultant Bureau. New York.

    Article  MathSciNet  Google Scholar 

  35. J. W. Weaver. Hidden patterns in Joyce ‘Portrait of the artist as a young man’. South Atlantic Bulletin, 41:63–63, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Andreani, R., Martinez, J.M., Salvatierra, M., Yano, F. (2006). Global Order-Value Optimization by means of a Multistart Harmonic Oscillator Tunneling Strategy. In: Liberti, L., Maculan, N. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 84. Springer, Boston, MA. https://doi.org/10.1007/0-387-30528-9_13

Download citation

Publish with us

Policies and ethics