Skip to main content

Neuroprotection by cAMP

Another Brick in the Wall

  • Chapter
Brain Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 557))

Abstract

Programmed cell death occurs in the nervous system both in normal development as well as in pathologic conditions, and is a key issue related to both brain repair and neurodegenerative diseases. Modulation of cell death in the nervous system may involve neurotrophic factors and other peptides, neurotransmitters and neuromodulators, that activate various signal transduction pathways, which in turn interact with the cell death execution machinery. Here we discuss the role of the second messenger cyclic adenosine 3′5′-monophosphate (cAMP) in cell death, and summarize current evidence that cAMP is a nodal point of neuroprotective signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2001: 2(7):545–550.

    Article  PubMed  CAS  Google Scholar 

  2. Uren AG, Vaux DL. Molecular and clinical aspects of apoptosis. Pharmacol Ther 1996; 72(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  3. Gibson RM. Does apoptosis have a role in neurodegeneration? Brit Med J 2001; 322(7301):1539–1540.

    Article  PubMed  CAS  Google Scholar 

  4. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000; 1(2):120–129.

    Article  PubMed  CAS  Google Scholar 

  5. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411(6835):342–348.

    Article  PubMed  CAS  Google Scholar 

  6. Aguayo AJ, Clarke DB, Jelsma TN et al. Effects of neurotrophins on the survival and regrowth of injured retinal neurons. Ciba Found Symp 1996; 196:135–144.

    PubMed  CAS  Google Scholar 

  7. Bjorklund A. Cell replacement strategies for neurodegenerative disorders. Novartis Found Symp 2000; 231:7–15.

    Article  PubMed  CAS  Google Scholar 

  8. Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci 2002; 3(5):401–409.

    Article  PubMed  CAS  Google Scholar 

  9. Raff, MC. Social controls on cell survival and cell death. Nature 1992; 356(6368):397–400.

    Article  PubMed  CAS  Google Scholar 

  10. Robinson GA, Butcher RW, Sutherland EW. Cyclic AMP. Annu Rev Biochem 1968; 37:149–174.

    Article  Google Scholar 

  11. McKnight GS. Cyclic AMP second messenger systems. Curr Opin Cell Biol 1991; 3(2):213–217.

    Article  PubMed  CAS  Google Scholar 

  12. Selbie LA, Hill SJ. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci 1998; 19(3):87–93.

    Article  PubMed  CAS  Google Scholar 

  13. Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 2001; 41:145–174.

    Article  PubMed  CAS  Google Scholar 

  14. Mehats C, Andersen CB, Filopanti M et al. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 2002; 13(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  15. Walsh DA, Van Patten SM. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J 1994; 8(15):1227–136.

    PubMed  CAS  Google Scholar 

  16. Clarke PGH. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990; 181(3):195–213.

    Article  PubMed  CAS  Google Scholar 

  17. Dunn WA, Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110:1923–1933.

    Article  PubMed  Google Scholar 

  18. Dunn WA, Jr. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 1990; 110:1935–1945.

    Article  PubMed  CAS  Google Scholar 

  19. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001; 8(6):569–581.

    Article  PubMed  CAS  Google Scholar 

  20. Tolkovsky AM, Xue L, Fletcher GC et al. Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 2002; 84(2–3):233–240.

    Article  PubMed  CAS  Google Scholar 

  21. Wyllie AH. Apoptosis: an overview. Br Med Bull 1997; 53(3):451–465.

    PubMed  CAS  Google Scholar 

  22. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257.

    PubMed  CAS  Google Scholar 

  23. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805):770–776.

    Article  PubMed  CAS  Google Scholar 

  24. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997; 91(4):443–446.

    Article  PubMed  CAS  Google Scholar 

  25. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999; 274(29):20049–20052.

    Article  PubMed  CAS  Google Scholar 

  26. Stennicke HR, Ryan CA, Salvesen GS. Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci 2002; 27(2):94–101.

    Article  PubMed  CAS  Google Scholar 

  27. Reed J. Bcl-2 family proteins. Oncogene 1998; 17(25):3225–36.

    Article  PubMed  Google Scholar 

  28. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13(15):1899–9111.

    PubMed  CAS  Google Scholar 

  29. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69:217–245.

    Article  PubMed  CAS  Google Scholar 

  30. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79:189–192.

    Article  PubMed  CAS  Google Scholar 

  31. Yang E, Zha J, Jockel J et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80(2):285–291.

    Article  PubMed  CAS  Google Scholar 

  32. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91(2):231–241.

    Article  PubMed  CAS  Google Scholar 

  33. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999; 13(22):2905–2927.

    Article  PubMed  CAS  Google Scholar 

  34. Harada H, Becknell B, Wilm M et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999; 3(4):413–422.

    Article  PubMed  CAS  Google Scholar 

  35. Bonni A, Brunet A, West AE et al. Cell survival promotrd by the Ras-MARK signaling pathway by transcription-dependent and-independent mechanisms. Science 1999; 286:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  36. Bertolotto C, Maulon L, Filippa N et al. Protein kinase C q and e promote T-cell survival by a Rsk-dependent phosphorylation and inactivation of BAD. J Biol Chem 2000; 275:37246–37250.

    Article  PubMed  CAS  Google Scholar 

  37. Harada H, Andersen JS, Mann M et al. P70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Nat Acad Sci USA 2001; 98:9666–9670.

    Article  PubMed  CAS  Google Scholar 

  38. Tan Y, Demeter MR, Ruan H et al. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 2000; 275:25865–25869.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou X, Liu Y, Payne G et al. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem 2000; 275:25046–25051.

    Article  PubMed  CAS  Google Scholar 

  40. Datta SR, Katsov A, Hu L et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 2000; 6:41–51.

    Article  PubMed  CAS  Google Scholar 

  41. Dramsi S, Scheid MP, Maiti A et al. Identification of a novel phosphorylation site, Ser170, as a regulator of BAD pro-apoptotic activity. J Biol Chem 2002; 277:6399–6405.

    Article  PubMed  CAS  Google Scholar 

  42. Lanotte M, Riviere JB, Hermouet S et al. Programmed cell death (apoptosis) is induced rapidly and with positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a myeloid leukemia cell line. J Cell Physiol 1991;146(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  43. Duprez E, Gjertsen BT, Bernard O et al. Antiapoptotic effect of heterozygously expressed mutant RI (Ala336→Asp) subunit of cAMP kinase I in a rat leukemia cell line. J Biol Chem 1993; 268(11):8332–8340.

    PubMed  CAS  Google Scholar 

  44. Lomo J, Blomhoff HK, Beiske K et al. TGF-beta 1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995; 154(4):1634–1643.

    PubMed  CAS  Google Scholar 

  45. Mentz F, Merle-Beral H, Ouaaz F et al. Theophylline, a new inducer of apoptosis in B-CLL: role of cyclic nucleotides. Br J Haematol 1995; 90(4):957–959.

    PubMed  CAS  Google Scholar 

  46. Selander KS, Harkonen PL, Valve E et al. Calcitonin promotes osteoclast survival in vitro. Mol Cell Endocrinol 1996; 122(2):119–129.

    Article  PubMed  CAS  Google Scholar 

  47. von Knethen A, Brune B. Attenuation of macrophage apoptosis by the cAMP-signaling system. Mol Cell Biochem 2000; 212(1–2):35–43.

    Article  Google Scholar 

  48. Boucher MJ, Duchesne C, Laine J et al. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition. Biochem Biophys Res Commun 2001; 285(2):207–216.

    Article  PubMed  CAS  Google Scholar 

  49. Takano M, Arai T, Mokuno Y et al. Dibutyryl cyclic adenosine monophosphate protects mice against tumor necrosis factor-alpha-induced hepatocyte apoptosis accompanied by increased heat shock protein 70 expression. Cell Stress Chaperones 1998; 3(2):109–117.

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka J, Koshimura K, Murakami Y et al. Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regul Pept 1997; 72(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  51. Barbacid M. Neurotrophic factors and their receptors. Curr Opin Cell Biol 1995; 7(2):148–155.

    Article  PubMed  CAS  Google Scholar 

  52. Heerssen HM, Segal RA. Location, location, location: a spatial view of neurotrophin signal transduction. Trends Neurosci 2002; 25(3):160–165.

    Article  PubMed  CAS  Google Scholar 

  53. Cardona-Gomez GP, Mendez P, DonCarlos LL et al. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Brain Res Rev 2001; 37(1–3):320–334.

    Article  PubMed  CAS  Google Scholar 

  54. Gozes I, Brenneman DE. A new concept in the pharmacology of neuroprotection. J Mol Neurosci 2000; 14(1–2):61–68.

    Article  PubMed  CAS  Google Scholar 

  55. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3(5):383–394.

    Article  PubMed  CAS  Google Scholar 

  56. Linden R. The anti-death league: Associative control of apoptosis in developing retinal tissue. Brain Res Brain Res Rev 2000; 32(1):146–158.

    Article  PubMed  CAS  Google Scholar 

  57. Rodbell M. The complex regulation of receptor-coupled G-proteins. Adv Enzyme Regul 1997; 37:427–435.

    Article  PubMed  CAS  Google Scholar 

  58. Brenneman DE, Fitzgerald S, Litzinger MJ. Neuronal survival during electrical blockade is increased by 8-bromo cyclic adenosine 3′,5′ monophosphate. J Pharm Exp Ther 1985; 233:402–408.

    CAS  Google Scholar 

  59. Rydel RE, Greene LA. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc Natl Acad Sci USA 1988; 85:1257–1261.

    Article  PubMed  CAS  Google Scholar 

  60. Edwards SN, Buckmaster AE, Tolkovsky AM. The death programme in cultured sympathetic neurones can be supressed at the posttranslational level by nerve growth factor, cyclic AMP, and depolarization. J Neurochem 1991; 57:2140–2143.

    Article  PubMed  CAS  Google Scholar 

  61. Kew JNC, Smith DW, Sofroniew MV. Nerve growth factor withdrawal induces the apoptotic death of developing septal cholinergic neurons in vitro: protection by cyclic AMP analogues and high potassium. Neuroscience 1996; 70:329–339.

    Article  PubMed  CAS  Google Scholar 

  62. Hartikka J, Staufenbiel M, Lübbert H. Cyclic AMP, but not basic FGF, increases the in vitro survival of mesencephalic dopaminergic neurons and protects them from MPP+-induced degeneration. J. Neurosci Res 1992; 32:190–201.

    Article  PubMed  CAS  Google Scholar 

  63. Kaiser PK, Lipton SA. VIP-mediated increase in cAMP prevents tetrodotoxin-induced retinal ganglion cell death in vitro. Neuron 1990; 5:373–381.

    Article  PubMed  CAS  Google Scholar 

  64. Brenneman DE, Neale EA, Foster GA et al. Nonneuronal Cells Mediate Neurotrophic Action of Vasoactive Intestinal Peptide. J Cell Biology 1987; 104:1603–1610.

    Article  CAS  Google Scholar 

  65. Chang JY, Korolev VV, Wang JZ. Cyclic AMP and pituitary adenylate cyclase-activating polypeptide (PACAP) prevent programmed cell death of cultured rat cerebellar granule cells. Neurosci Lett 1996; 206(2–3):181–184.

    Article  PubMed  CAS  Google Scholar 

  66. Villalba M, Biackaert J, Journot L. Pituitary adenylate cyclase-activating polypeptide (PACAP38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP Kinase) pathway. J Neurosci 1997; 17(1):83–90.

    PubMed  CAS  Google Scholar 

  67. Chang JY, Korolev VV. Cyclic AMP and sympathetic neuronal programmed cell death. Neurochem Int 1997; 31(2):161–167.

    Article  PubMed  CAS  Google Scholar 

  68. Varella MH, Correa DF, Campos CBL et al. Protein kinases selectively modulate apoptosis in the developing retina in vitro. Neurochem Int 1997; 31:217–227.

    Article  PubMed  CAS  Google Scholar 

  69. Morio H, Tatsuno I, Hirai A et al. Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res 1996; 741(1–2):82–88.

    Article  PubMed  CAS  Google Scholar 

  70. Shoge KS, Mishima HK, Saitoh T et al. Protective effects of vasoactive intestinal peptide against delayed glutamate neurotoxicity in cultured retina. Brain Res 1998; 809:127–136.

    Article  PubMed  CAS  Google Scholar 

  71. Ferreira JM, Paes-de-Carvalho R. Long-term activation of adenosine A(2a) receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res 2001; 900(2):169–176.

    Article  PubMed  CAS  Google Scholar 

  72. Pedersen WA, McCullers D, Culmsee C et al. Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol Dis 2001; 8(3):492–503.

    Article  PubMed  CAS  Google Scholar 

  73. Pedersen WA, Wan R, Zhang P et al. Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I. J Neurosci 2002; 22(2):404–412.

    PubMed  CAS  Google Scholar 

  74. Meyer-Franke A, Kaplan MR, Pfrieger FW et al. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 1995; 15(4):805–19.

    Article  PubMed  CAS  Google Scholar 

  75. Meyer-Franke A, Wilkinson GA, Kruttgen A et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 1998; 21(4):681–693.

    Article  PubMed  CAS  Google Scholar 

  76. Hanson MG Jr, Shen S, Wiemelt AP et al. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J Neurosci 1998; 18(18):7361–7371.

    PubMed  CAS  Google Scholar 

  77. Linden R, Rehen SK, Chiarini LB. Apoptosis in developing retinal tissue. Progr Retinal Eye Res 1999; 18:133–165.

    Article  CAS  Google Scholar 

  78. Rehen SK, Varella MH, Freitas FG et al. Contrasting effects of protein synthesis and of cyclic AMP on apoptosis in the developing retina. Development 1996; 122:1439–1448.

    PubMed  CAS  Google Scholar 

  79. Rehen SK, Neves DDC, Fragel-Madeira L et al. Selective sensitivity of early post-mitotic retinal cells to apoptosis induced by inhibition of protein synthesis. Eur J Neurosci 1999; 11:349–356.

    Article  Google Scholar 

  80. Chiarini LB, Leal-Ferreira ML, de Freitas FG et al. Changing sensitivity to cell death during development of retinal photoreceptors. J Neurosci Res 2003; 74(6):875–83.

    Article  PubMed  CAS  Google Scholar 

  81. Young SH, Poo MM. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 1983; 305(5935):634–637.

    Article  PubMed  CAS  Google Scholar 

  82. Fernandes AJ, Martinez AMB, Linden R. Estruturas juncionais precoces na camada plexiforme interna da retina do rato em desenvolvimento. Res XII Col Soc Bras Micr Eletr 1988; 225–226.

    Google Scholar 

  83. Shearman LP, Zeitzer J, Weaver DR. Widespread expression of functional D1-dopamine receptors in fetal rat brain. Brain Res Dev Brain Res 1997; 102(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  84. Wu DK, Cepko CL. Development of dopaminergic neurons is insensitive to optic nerve section in the neonatal rat retina. Brain Res Dev Brain Res 1993; 20; 74(2):253–260.

    Article  PubMed  CAS  Google Scholar 

  85. Schambra UB, Duncan GE, Breese GR et al. Ontogeny of D1A and D2 dopamine receptor subtypes in rat brain using in situ hybridization and receptor binding. Neuroscience 1994; 62(1):65–85.

    Article  PubMed  CAS  Google Scholar 

  86. Shelke RR, Lakshmana MK, Ramamohan Y et al. Levels of dopamine and noradrenaline in the developing of retina—Effect of light deprivation. Int J Dev Neurosci 1997; 15(1):139–143.

    Article  PubMed  CAS  Google Scholar 

  87. Witkovsky P, Schutte M. The organization of dopaminergic neurons in vertebrate retinas. Vis Neurosci 1991; 7(1–2):113–124.

    Article  PubMed  CAS  Google Scholar 

  88. Varella MH, Mello FG, Linden R. Evidence for an antiapoptotic role of dopamine in developing retinal tissue. J Neurochem 1999; 73:485–492.

    Article  PubMed  CAS  Google Scholar 

  89. Silveira MS, Costa MR, Bozza M et al. Pituitary Adenylyl Cyclase-Activating Polypeptide Prevents Induced Cell Death In Retinal Tissue Through Activation Of Cyclic AMP-Dependent Protein Kinase. J Biol. Chem 2002; 27(18):16075–16080.

    Article  CAS  Google Scholar 

  90. Chiarini LB, Freitas ARO, Martins VM et al. Cellular prion protein transduces neuroprotective signals. EMBO J 2002; 21:3317–3326.

    Article  PubMed  CAS  Google Scholar 

  91. Zanata SM, Lopes MH, Mercadante AF et al. The stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 2002; 21:3307–3316.

    Article  PubMed  CAS  Google Scholar 

  92. Taylor SS. cAMP-dependent protein kinase. Model for an enzyme family. J Biol Chem 1989; 264(15):8443–8446.

    PubMed  CAS  Google Scholar 

  93. Riccio A, Ahn S, Davenport CM et al. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 1999; 286(5448):2358–2361.

    Article  PubMed  CAS  Google Scholar 

  94. Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 1999; 151(1–2):65–77.

    Article  PubMed  CAS  Google Scholar 

  95. Lonze BE, Riccio A, Cohen S et al. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB Neuron 2002; 34(3):371–385.

    Article  PubMed  CAS  Google Scholar 

  96. Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation Trends Cell Biol 2002; 12(6):258–266.

    Article  PubMed  CAS  Google Scholar 

  97. Dugan LL, Kim JS, Zhang Y et al. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem 1999; 274(36):25842–25848.

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura T, Gold GH. A cyclic nucleotide-gated condutance in olfactory cilia. Nature 1987; 325:342–344.

    Article  Google Scholar 

  99. Dhallan RS, Yau K, Scrader K et al. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 1990; 347:184–187.

    Article  PubMed  CAS  Google Scholar 

  100. Goulding EH, Ngai J, Kramer RH et al. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory. Neuron 1992; 8(1):45–58.

    Article  PubMed  CAS  Google Scholar 

  101. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun. 1997; 239(2):357–366.

    Article  PubMed  CAS  Google Scholar 

  102. Xiao AY, Wei L, Xia S et al. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 2002; 22(4):1350–1362.

    PubMed  CAS  Google Scholar 

  103. Gallo V, Kingsbury A, Balazs R et al. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 1987; 7(7):2203–2213.

    PubMed  CAS  Google Scholar 

  104. Rooji J, Zwartkruis FJT, Verheijen MHG et al. Epac is a Rap1 guanine nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396:474–477.

    Article  CAS  Google Scholar 

  105. Kawasaki H, Springett GM, Mochizuki N et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998; 282:2275–2279.

    Article  PubMed  CAS  Google Scholar 

  106. Pham N, Cheglakov I, Koch CA et al. The guanine nucleotide exchange factor CNrasGEF activates Ras in response to cAMP and cGMP. Curr Biol 2000; 10:555–558.

    Article  PubMed  CAS  Google Scholar 

  107. Mei FC, Qiao J, Tsygankova OM et al. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J Biol Chem 2002; 277(13):11497–11504.

    Article  PubMed  CAS  Google Scholar 

  108. Clarke G, Collins RA, Leavitt BR et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 2000; 406(6792):195–199.

    Article  PubMed  CAS  Google Scholar 

  109. Richards JS. New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol Endocrinol 2001; 15(2):209–218.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Silveira, M.S., Linden, R. (2006). Neuroprotection by cAMP. In: Bähr, M. (eds) Brain Repair. Advances in Experimental Medicine and Biology, vol 557. Springer, Boston, MA. https://doi.org/10.1007/0-387-30128-3_10

Download citation

Publish with us

Policies and ethics