Skip to main content

The Psychophysics of Pitch

  • Chapter
Pitch

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeroyd MA, Moore BCJ, Moore GA (2001) Melody recognition using three types of dichotic-pitch stimulus. J Acoust Soc Am 110:1498–1504.

    CAS  PubMed  Google Scholar 

  • Arehart KH, Burns EM (1999) A comparison of monotic and dichotic complex-tone pitch perception in listeners with hearing loss. J Acoust Soc Am 106:993–997.

    Article  CAS  PubMed  Google Scholar 

  • Attneave F, Olson RK (1971) Pitch as a medium: a new approach to psychophysical scaling. Am J Psychol 84:147–166.

    CAS  PubMed  Google Scholar 

  • Berg BG (1989) Analysis of weights in multiple observation tasks. J Acoust Soc Am 86:1743–1746.

    Article  Google Scholar 

  • Bernstein JG, Oxenham AJ (2003) Pitch discrimination of diotic and dichotic complexes: harmonic resolvability or harmonic number? J Acoust Soc Am 113:3323–3324.

    PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026–1036.

    Article  PubMed  Google Scholar 

  • Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Am 55:292–296.

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS, Ahad PA, Kim J (1994a) Resetting the pitch-analysis system. 2. Role of sudden onsets and offsets in the perception of individual components in a cluster of overlapping tones. J Acoust Soc Am 96:2694–2703.

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS, Ahad P, Kim J, Melnerich L (1994b) Resetting the pitch-analysis system: 1. Effects of rise times of tones in noise backgrounds or of harmonics in a complex tone. Percept Psychophys 56:155–162.

    CAS  PubMed  Google Scholar 

  • Burns EM, Viemeister NF (1976) Nonspectral pitch. J Acoust Soc Am 60:863–869.

    Article  Google Scholar 

  • Burns EM, Viemeister NF (1981) Played again SAM: further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Article  Google Scholar 

  • Cariani PA, Delgutte B (1996) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76:1698–1716.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1996) Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker. J Acoust Soc Am 99:517–524.

    CAS  PubMed  Google Scholar 

  • Carlyon RP (1997) The effects of two temporal cues on pitch judgements. J Acoust Soc Am 102:1097–1105.

    Article  Google Scholar 

  • Carlyon RP, Shackleton TM (1994) Comparing the fundamental frequencies of resolved and unresolved harmonics: evidence for two pitch mechanisms? J Acoust Soc Am 95:3541–3554.

    Google Scholar 

  • Carlyon RP, Moore BC, Micheyl C (2000) The effect of modulation rate on the detection of frequency modulation and mistuning of complex tones. J Acoust Soc Am 108:304–315.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    PubMed  Google Scholar 

  • Ciocca V, Darwin CJ (1999) The integration of nonsimultaneous frequency components into a single virtual pitch. J Acoust Soc Am 105:2421–2430.

    Article  CAS  PubMed  Google Scholar 

  • Cramer EM, Huggins WH (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Article  Google Scholar 

  • Culling JF (2000) Dichotic pitches as illusions of binaural unmasking. III. The existence region of the Fourcin pitch. J Acoust Soc Am 103:3509–3526.

    Google Scholar 

  • Culling JF, Summerfield AQ, Marshall DH (1998a) Dichotic pitches as illusions of binaural unmasking. I. Huggins’ pitch and the “binaural edge pitch”. J Acoust Soc Am 103:3509–3526.

    CAS  PubMed  Google Scholar 

  • Culling JF, Marshall DH, Summerfield AQ (1998b) Dichotic pitches as illusions of binaural unmasking. II. The Fourcin pitch and the dichotic repetition pitch. J Acoust Soc Am 103:3527–3539.

    CAS  PubMed  Google Scholar 

  • Dai H (2000) On the relative influence of individual harmonics on pitch judgment. J Acoust Soc Am 107:953–959.

    Article  CAS  PubMed  Google Scholar 

  • d’Alessandro C, Castellengo M (1994) The pitch of short-duration vibrato tones. J Acoust Soc Am 95:1617–1630.

    Google Scholar 

  • Darwin CJ (1992) Listening to two things at once. In: Schouten MEH (ed), The Auditory Processing of Speech: From Sounds to Words. Berlin: Mouton de Gruyter, pp. 133–147.

    Google Scholar 

  • de Cheveigné A (1999) Pitch shifts of mistuned partials: a time-domain model. J Acoust Soc Am 106:887–897.

    PubMed  Google Scholar 

  • Elfner LF, Caskey WE (1965) Continuity effects with alternating sounded noise and tone signals as a function of manner of presentation. J Acoust Soc Am 38:543–547.

    Article  CAS  PubMed  Google Scholar 

  • Emmerich DS, Ellermeier W, Butensky B (1989) A re-examination of the frequency discrimination of random-amplitude tones, and a test of Henning’s modified energy-detector model. J Acoust Soc Am 85:1653–1659.

    Article  Google Scholar 

  • Faulkner A (1985) Pitch discrimination of harmonic complex signals: residue pitch or multiple component discriminations. J Acoust Soc Am 78:1993–2004.

    Article  CAS  PubMed  Google Scholar 

  • Feth LL (1974) Frequency discrimination of complex periodic tones. Percept Psychophys 15:375–379.

    Google Scholar 

  • Feth LL, O’Malley H, Ramsey JJ (1982) Pitch of unresolved, two-component complex tones. J Acoust Soc Am 72:1403–1412.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JL, Guttman N (1960) On the pitch of peridic pulses. J Acoust Soc Am 32:1308–1319.

    Google Scholar 

  • Fourcin AJ (1970) Central pitch and auditory lateralization. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 319–328.

    Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    Article  CAS  PubMed  Google Scholar 

  • Gockel H, Moore BCJ, Carlyon RP (2001) Influence of rate of change of frequency on the overall pitch of frequency-modulated tones. J Acoust Soc Am 109:701–712.

    Article  CAS  PubMed  Google Scholar 

  • Gockel H, Carlyon RP, Plack CJ (2004) Across frequency interference effects in fundamental frequency discrimination: questioning evidence for two pitch mechanisms. J Acoust Soc Am 116:1092–1104.

    Article  PubMed  Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    CAS  PubMed  Google Scholar 

  • Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New York: Krieger.

    Google Scholar 

  • Grimault N, Micheyl C, Carlyon RP, Collet L (2002) Evidence for two pitch encoding mechanisms using a selective auditory training paradigm. Percept Psychophys 64:189–197.

    PubMed  Google Scholar 

  • Grose JH, Hall JW, Buss E (2002) Virtual pitch integration for asynchronous harmonics. J Acoust Soc Am 112:2956–2961.

    Article  PubMed  Google Scholar 

  • Hafter ER, Saberi K (2001) A level of stimulus representation model for auditory detection and attention. J Acoust Soc Am 110:1489–1497.

    Article  CAS  PubMed  Google Scholar 

  • Hall JW, Peters RW (1981) Pitch from nonsimultaneous successive harmonics in quiet and noise. J Acoust Soc Am 69:509–513.

    PubMed  Google Scholar 

  • Hall JWI, Buss E, Grose JH (2003) Modulation rate discrimination for unresolved components: temporal cues related to fine structure and envelope. J Acoust Soc Am 113:986–993.

    Article  PubMed  Google Scholar 

  • Hartmann WM (1997) Signals, Sound, and Sensation. New York: Springer-Verlag.

    Google Scholar 

  • Hartmann WM, Doty SL (1996) On the pitches of the components of a complex tone. J Acoust Soc Am 99:567–578.

    CAS  PubMed  Google Scholar 

  • Hartmann WM, McMillon CD (2001) Binaural coherence edge pitch. J Acoust Soc Am 109:294–305.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM, McAdams S, Smith BK (1990) Hearing a mistuned harmonic in an otherwise periodic complex tone. J Acoust Soc Am 88:1712–1724.

    Article  CAS  PubMed  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001a) Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–2316.

    CAS  PubMed  Google Scholar 

  • Heinz MG Colburn HS Carney LH (2001b) Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation. Neural Comput 13:2317–2338.

    CAS  PubMed  Google Scholar 

  • Helmholtz HLF (1863) Die Lehre von den Tonempfindungen als Physiologische Grundlage für die Theorie der Musik. Braunschweig: F. Vieweg.

    Google Scholar 

  • Henning GB (1966) Frequency discrimination of random amplitude tones. J Acoust Soc Am 39:336–339.

    CAS  PubMed  Google Scholar 

  • Houtgast T (1973) Psychophysical experiments on “tuning curves” and “two-tone inhibition.” Acustica 29:168–179.

    Google Scholar 

  • Houtgast T (1976) Subharmonic pitches of a pure tone at low S/N ratio. J Acoust Soc Am 60:405–409.

    Article  CAS  PubMed  Google Scholar 

  • Houtsma AJM (1995) Pitch perception. In: Moore BCJ (ed), Hearing. Orlando, FL: Academic Press, pp. 267–295.

    Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of pure tones: evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Article  Google Scholar 

  • Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310.

    Article  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    CAS  PubMed  Google Scholar 

  • Julesz B (1971) Foundations of Cyclopean Perception. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Kaernbach C, Bering C (2001) Exploring the temporal mechanism involved in the pitch of unresolved harmonics. J Acoust Soc Am 110:1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Kaernbach C, Demany L (1998) Psychophysical evidence against the autocorrelation theory of auditory temporal processing. J Acoust Soc Am 104:2298–2306.

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behaviour in two-tone responses as reflected in cochlear-nerve-fibre responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    Article  CAS  PubMed  Google Scholar 

  • Klein MA, Hartmann WM (1981) Binaural edge pitch. J Acoust Soc Am 70:51–61.

    CAS  PubMed  Google Scholar 

  • Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J Acoust Soc Am 97:1817–1829.

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180.

    Article  CAS  PubMed  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–133.

    Article  CAS  PubMed  Google Scholar 

  • Licklider JCR (1956) Auditory frequency analysis. In: Cherry C (ed), Information Theory. New York: Academic Press, pp. 253–268.

    Google Scholar 

  • Lin JY, Hartmann WM (1998) The pitch of a mistuned harmonic: evidence for a template model. J Acoust Soc Am 103:2608–2617.

    CAS  PubMed  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross correlation: a proposed mechanism for acoustic pitch perception. Biol Cybernet 47:149–163.

    Article  CAS  Google Scholar 

  • McFadden D (1986) The curious half octave shift: evidence for a basalward migration of the travelling-wave envelope with increasing intensity. In: Salvi RJ, Henderson D, Hamernik RP, Colletti V (eds), Basic and Applied Aspects of Noise-Induced Hearing Loss. New York: Plenum Press, pp. 295–312.

    Google Scholar 

  • Meddis R, Hewitt M (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811–1820.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Oxenham AJ (2004) Sequential F0 comparisons between resolved and unresolved harmonics: no evidence for translation noise between two pitch mechanisms. J Acoust Soc Am: 116:3038–3050.

    Article  PubMed  Google Scholar 

  • Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1982) An Introduction to the Psychology of Hearing. 2nd ed. London: Academic Press.

    Google Scholar 

  • Moore BCJ (2003) An Introduction to the Psychology of Hearing. 5th ed. London: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1988) Effects of the relative phase of the components on the pitch discrimination of complex tones by subjects with unilateral and bilateral cochlear impairments. In: Duifhuis H, Wit H, Horst J (eds), Basic Issues in Hearing. London: Academic Press, pp. 421–430.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1989) Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation. J Acoust Soc Am 86:1722–1732.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1990) Frequency discrimination of complex tones with overlapping and non-overlapping harmonics. J Acoust Soc Am 87:2163–2177.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Moore GA (2003) Perception of the low pitch of frequency-shifted complexes. J Acoust Soc Am 113:977–985.

    PubMed  Google Scholar 

  • Moore BCJ, Ohgushi K (1993) Audibility of partials in inharmonic complex tones. J Acoust Soc Am 93:452–461.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Rosen SM (1979) Tune recognition with reduced pitch and interval information. Q J Exp Psychol 31:229–240.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Sek A (1994) Effects of carrier frequency and background noise on the detection of mixed modulation. J Acoust Soc Am 96:741–751.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Sek A (1996) Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. J Acoust Soc Am 100:2320–2331.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Shailer MJ (1984) Frequency and intensity difference limens for harmonics within complex tones. J Acoust Soc Am 75:550–561.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1985) Relative dominance of individual partials in determining the pitch of complex tones. J Acoust Soc Am 77:1853–1860.

    Google Scholar 

  • Nabelek IV (1996) Pitch of a sequence of two short tones and the critical pause duration. Acustica 82:531–539.

    Google Scholar 

  • Ohm GS (1843) Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann Phys Chem 59:513–565.

    Google Scholar 

  • Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675.

    CAS  PubMed  Google Scholar 

  • Oxenham AJ, Bernstein JGW, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci USA 101:1421–1425.

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Wightman FL (1976) Residue pitch as a function of component spacing. J Acoust Soc Am 59:1450–1459.

    CAS  PubMed  Google Scholar 

  • Patterson RD, Handel S, Yost WA, Datta AJ (1996) The relative strength of the tone and noise components in iterated rippled noise. J Acoust Soc Am 100:3286–3294.

    Article  Google Scholar 

  • Peters RW, Moore BCJ, Glasberg BR (1983) Pitch of components of complex tones. J Acoust Soc Am 73:924–929.

    Article  CAS  PubMed  Google Scholar 

  • Plack CJ, Carlyon RP (1995) Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics. J Acoust Soc Am 98:1355–1364.

    Article  Google Scholar 

  • Plack CJ, White LJ (2000a) Pitch matches between unresolved complex tones differing by a single interpulse interval. J Acoust Soc Am 108:696–705.

    CAS  PubMed  Google Scholar 

  • Plack CJ, White LJ (2000b) Perceived continuity and pitch perception. J Acoust Soc Am 108:1162–1169.

    CAS  PubMed  Google Scholar 

  • Plomp R (1964) The ear as a frequency analyzer. J Acoust Soc Am 36:1628–1636.

    Google Scholar 

  • Plomp R (1967) Pitch of complex tones. J Acoust Soc Am 41:1526–1533.

    CAS  PubMed  Google Scholar 

  • Plomp R, Mimpen AM (1968) The ear as a frequency analyzer II. J Acoust Soc Am 43:764–767.

    CAS  PubMed  Google Scholar 

  • Pollack I (1969) Periodicity pitch for white noise—fact or artifact? J Acoust Soc Am 45:237–238.

    CAS  PubMed  Google Scholar 

  • Pressnitzer D, Patterson RD (2001) Distortion products and the pitch of harmonic complex tones. In: Breebaart DJ, Houtsma AJM, Kohlrausch A, Prijs VF, Schoonhoven R (eds), Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker, pp. 97–104.

    Google Scholar 

  • Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084.

    Article  CAS  PubMed  Google Scholar 

  • Pressnitzer D, de Cheveigné A, Winter IM (2002) Perceptual pitch shifts for sounds with similar waveform autocorrelation. Acoust Res Lett Online 3:1–6.

    Google Scholar 

  • Richards VM, Zhu S (1994) Relative estimates of combination weights, decision criteria, and internal noise based on correlation coefficients. J Acoust Soc Am 95:423–434.

    CAS  PubMed  Google Scholar 

  • Ritsma RJ (1962) Existence region of the tonal residue. I. J Acoust Soc Am 34:1224–1229.

    Article  Google Scholar 

  • Ritsma RJ (1963) Existence region of the tonal residue. II. J Acoust Soc Am 35:1241–1245.

    Article  Google Scholar 

  • Ritsma RJ (1967) Frequencies dominant in the perception of the pitch of complex sounds. J Acoust Soc Am 42:191–198.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    CAS  PubMed  Google Scholar 

  • Rossing TD, Houtsma AJM (1986) Effects of signal envelope on the pitch of short sinusoidal tones. J Acoust Soc Am 79:1926–1933.

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    Article  CAS  PubMed  Google Scholar 

  • Schouten JF (1938) The perception of subjective tones. Proc Kon Akad Wetenschap 41:1086–1093.

    Google Scholar 

  • Schouten JF (1940) The residue and the mechanism of hearing. Proc Kon Akad Wetenschap 43:991–999.

    Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: Sijthoff, pp. 41–54.

    Google Scholar 

  • Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Am 34:1418–1424.

    Google Scholar 

  • Schroeder MR (1970) Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans Inform Theory 16:85–89.

    Article  Google Scholar 

  • Seebeck A (1841) Beobachtungen über einige bedingungen der entstehung von tönen. Ann Phys Chem 53:417–436.

    Google Scholar 

  • Sek A, Moore BCJ (1995) Frequency discrimination as a function of frequency, measured in several ways. J Acoust Soc Am 97:2479–2486.

    Article  CAS  PubMed  Google Scholar 

  • Shackleton TM, Carlyon RP (1994) The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. J Acoust Soc Am 95:3529–3540.

    CAS  PubMed  Google Scholar 

  • Shamma SA (1985a) Speech processing in the auditory system. I: The representation of speech sounds in the responses in the auditory nerve. J Acoust Soc Am 78:1612–1621.

    CAS  PubMed  Google Scholar 

  • Shamma SA (1985b) Speech processing in the auditory system. II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    CAS  PubMed  Google Scholar 

  • Shamma S, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J Acoust Soc Am 107:2631–2644.

    CAS  PubMed  Google Scholar 

  • Siegel RJ (1965) A replication of the mel scale of pitch. Am J Psychol 78:615–620.

    CAS  PubMed  Google Scholar 

  • Smoorenburg GF (1970) Pitch perception of two-frequency stimuli. J Acoust Soc Am 48:924–941.

    Article  CAS  PubMed  Google Scholar 

  • Stevens SS (1935) The relation of pitch to intensity. J Acoust Soc Am 6:150–154.

    Article  Google Scholar 

  • Stevens SS, Volkmann J, Newman EB (1937) A scale for the measurement of the psychological magnitude of pitch. J Acoust Soc Am 8:185–190.

    Google Scholar 

  • Terhardt E (1971) Pitch shifts of harmonics, an explanation of the octave enlargement phenomenon. Proc 7th ICA, Budapest, Hungary, 621–624.

    Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E (1979) Calculating virtual pitch. Hear Res 1:155–182.

    Article  CAS  PubMed  Google Scholar 

  • Terhardt E, Fastl H (1971) Zum Einfluss von Störtönen und Störgeräuschen auf die Tonhöhe von Sinustönen. Acustica 25:53–61.

    Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982a) Pitch of complex signals according to virtual pitch theory. J Acoust Soc Am 71:671–678.

    Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982b) Algorithm for extraction of pitch salience from complex tonal signals. J Acoust Soc Am 71:679–688.

    Google Scholar 

  • van de Par S, Kohlrausch A (1997) A new approach to comparing binaural masking level differences at low and high frequencies. J Acoust Soc Am 101:1671–1680.

    PubMed  Google Scholar 

  • Verschuure J, van Meeteren AA (1975) The effect of intensity on pitch. Acustica 32:33–44.

    Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.

    Article  CAS  PubMed  Google Scholar 

  • Ward WD (1954) Subjective musical pitch. J Acoust Soc Am 26:369–380.

    Google Scholar 

  • White LJ, Plack CJ (1998) Temporal processing of the pitch of complex tones. J Acoust Soc Am 103:2051–2063.

    CAS  PubMed  Google Scholar 

  • Wiegrebe L (2001) Searching for the time constant of neural pitch extraction. J Acoust Soc Am 109:1082–1091.

    Article  CAS  PubMed  Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    CAS  PubMed  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–220.

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Patterson RD, Sheft S (1996) A time-domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078.

    CAS  PubMed  Google Scholar 

  • Yost WA, Patterson R, Sheft S (1998) The role of the envelope in processing iterated rippled noise. J Acoust Soc Am 104:2349–2361.

    CAS  PubMed  Google Scholar 

  • Zwicker E (1970) Masking and psychological excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff, pp. 376–394.

    Google Scholar 

  • Zwicker E, Fastl H (1990) Psychoacoustics—Facts and Models. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Plack, C.J., Oxenham, A.J. (2005). The Psychophysics of Pitch. In: Plack, C.J., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds) Pitch. Springer Handbook of Auditory Research, vol 24. Springer, New York, NY. https://doi.org/10.1007/0-387-28958-5_2

Download citation

Publish with us

Policies and ethics