Skip to main content

Lysosomal Membrane Proteins

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The lysosomal limiting membrane has multiple functions including acidification of the lysosomal matrix, sequestration of lysosomal enzymes, mediation of fusion events beween lysosomes and other organelles, and transport of degradation products to the cytoplasm. Lysosomal membrane proteins are usually highly glycosylated proteins decorating the luminal surface of lysosomal membranes. LAMP-1, LAMP-2 and LIMP-2 are the most abundant components of this membrane. Experiments on knockout mice have demonstrated that these proteins are important for normal cell physiology and that they can be involved in pathological conditions. The deficiency of LAMP-1 causes only a mild phenotype and also no apparent lysosomal dysfunctions. It is likely that the lack of LAMP-1 may be compensated by the structurally related LAMP-2. A role for LAMP-2 in the so-called chaperone-mediated autophagy has been described. Furthermore, LAMP-2 deficiency in mice has revealed roles in lysosomal enzyme targeting, autophagy and lysosomal biogenesis. LAMP-2-deficient mice exhibit a similar phenotype to individuals with Danon disease, which is caused by mutations in the LAMP-2 gene. Experiments on LIMP-2 knockout mice and overexpression studies also suggested specific functions for this protein in maintaining normal lysosomal biogenesis. Apart from the major proteins of the lysosomal membrane, about 20 less abundant or transient components of this membrane have been described. Although it is known that mutations in some of these proteins are associated with human disease, for most of the lysosomal membrane components the actual function is yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winchester BG. Lysosomal membrane proteins. Eur J Paed Neur 2001;5(Suppl A):11–19.

    Article  Google Scholar 

  2. Sagne C, Agulhon C, Ravassard P et al. Identification and characterization of a lysosomal transporter for small neutral ammo acids. Proc Natl Acad Sci USA 2001;98:7206–11.

    Article  PubMed  CAS  Google Scholar 

  3. Lloyd JB, Forster S. The lysosome membrane. TIBS 1986;11:365–68.

    CAS  Google Scholar 

  4. Fukuda M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 1991;266:21327–30.

    PubMed  CAS  Google Scholar 

  5. Burnside J, Schneider DL. Characterization of the membrane proteins of rat liver lysosomes. Composition, enzyme activities and turnover. Biochem J 1982;204:525–34.

    PubMed  CAS  Google Scholar 

  6. Ohsumi Y, Ishikawa T, Kato K. A rapid and simplified method for the preparation of lysosomal membranes from rat liver. J Biochem 1983;93:547–56.

    PubMed  CAS  Google Scholar 

  7. Barriocanal JG, Bonifacino JS, Yuan L et al. Biosynthesis, glycosylation, movement through the Golgi system, and transport to lysosomes by an N-linked carbohydrate-independent mechanism of three lysosomal integral membrane proteins. J Biol Chem 1986;261:16755–63.

    PubMed  CAS  Google Scholar 

  8. Lewis V, Green SA, Marsh M et al. Glycoproteins of the lysosomal membrane. J Cell Biol 1985;100:1839–47.

    Article  PubMed  CAS  Google Scholar 

  9. Lippincott-Schwartz J, Fambrough DM. Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: Kinetic and morphological analysis. Cell 1987;49:669–77.

    Article  PubMed  CAS  Google Scholar 

  10. Carlsson SR, Fukuda M. Structure of human lysosomal membrane glycoprotein 1. Assignment of disulfide bonds and visualization of its domain arrangement. J Biol Chem 1989;264:20526–31.

    PubMed  CAS  Google Scholar 

  11. Fukuda M, Viitala J, Matteson J et al. Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem 1988;263:18920–28.

    PubMed  CAS  Google Scholar 

  12. Viitala J, Carlsson SR, Siebert PD et al. Molecular cloning of cDNAs encoding lamp A, a human lysosomal membrane glycoprotein with apparent Mr approximately equal to 120,000. Proc Natl Acad Sci USA 1988;85:3743–47.

    Article  PubMed  CAS  Google Scholar 

  13. Chen JW, Pan W, D’Souza MP et al. Lysosome-associated membrane proteins: Characterization of LAMP-1 of macrophage P388 and mouse embryo 3T3 cultured cells. Arch Biochem Biophys 1985;239:574–86.

    Article  PubMed  CAS  Google Scholar 

  14. Granger BL, Green SA, Gabel CA et al. Characterization and cloning of lgp 110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 1990;265:12036–43.

    PubMed  CAS  Google Scholar 

  15. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol 1989;5:483–525.

    Article  PubMed  CAS  Google Scholar 

  16. Neiss WF. A coat of glycoconjugates on the inner surface of the lysosomal membrane in the rat kidney. Histochemistry 1984;80:603–08.

    PubMed  CAS  Google Scholar 

  17. Kundra R, Kornfeld S. Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem 1999;274:31039–46.

    Article  PubMed  CAS  Google Scholar 

  18. Lee N, Wang WC, Fukuda M. Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J Biol Chem 1990;265:20476–87.

    PubMed  CAS  Google Scholar 

  19. Youakim A, Romero PA, Yee K et al. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo2 human colonic adenocarcinoma cells. Cancer Res 1989;49:6889–95.

    PubMed  CAS  Google Scholar 

  20. Yamashita K, Ohkura T, Tachibana Y et al. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984;259:10834–40.

    PubMed  CAS  Google Scholar 

  21. Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [GlcNAc-beta (1,6)Man-alpha (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986;261:10772–77.

    PubMed  CAS  Google Scholar 

  22. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996;273:501–03.

    Article  PubMed  CAS  Google Scholar 

  23. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990;15:305–09.

    Article  PubMed  CAS  Google Scholar 

  24. Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med 1998;76:6–12.

    Article  PubMed  CAS  Google Scholar 

  25. Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translation. J Cell Sci 2001;114:2491–99.

    PubMed  CAS  Google Scholar 

  26. Andrejewski N, Punnonen EL, Guhde G et al. Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem 1999;274:12692–701.

    Article  PubMed  CAS  Google Scholar 

  27. Tanaka Y, Guhde G, Suter A et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000;406:902–06.

    Article  PubMed  CAS  Google Scholar 

  28. Saftig P, Tanaka Y, Lullmann-Rauch R et al. Disease model: LAMP-2 enlightens Danon disease. Trends Mol Med 2001;7:37–39.

    Article  PubMed  CAS  Google Scholar 

  29. Nishino I, Fu J, Tanji K et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000;406:906–10.

    Article  PubMed  CAS  Google Scholar 

  30. Nishino I. Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep 2003;3:64–69.

    Article  PubMed  Google Scholar 

  31. Danon MJ, Oh SJ, DiMauro S et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology 1981;31:51–57.

    PubMed  CAS  Google Scholar 

  32. Eskelinen EL, Illert AL, Tanaka Y et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002;13:3355–68.

    Article  PubMed  CAS  Google Scholar 

  33. Vega MA, Segui-Real B, Garcia JA et al. Cloning, sequencing, and expression of a cDNA encoding rat LIMP II, a novel 74-kDa lysosomal membrane protein related to the surface adhesion protein CD36. J Biol Chem 1991;266:16818–24.

    PubMed  CAS  Google Scholar 

  34. Metzelaar MJ, Wijngaard PL, Peters PJ et al. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J Biol Chem 1991;266:3239–45.

    PubMed  CAS  Google Scholar 

  35. Mahmudi-Azer S, Downey GP, Moqbel R. Translocation of the tetraspanin CD63 in association with human eosinophil mediator release. Blood 2002;99:4039–47.

    Article  PubMed  CAS  Google Scholar 

  36. Duffield A, Kamsteeg EJ, Brown AN et al. The tetraspanin CD63 enhances the internalization of the H, K-ATPase beta-subunit. Proc Natl Acad Sci USA 2003;100:15560–5.

    Article  PubMed  CAS  Google Scholar 

  37. Gwynn B, Eicher EM, Peters LL. Genetic localization of Cd63, a member of the transmembrane 4 superfamily, reveals two distinct loci in the mouse genome. Genomics 1996;35:389–91.

    Article  PubMed  CAS  Google Scholar 

  38. Kuronita T, Eskelinen EL, Fujita H et al. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J Cell Sci 2002;115:4117–31.

    Article  PubMed  CAS  Google Scholar 

  39. Gamp A, Tanaka Y, Lullmann-Rauch R et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 2003;12:631–46.

    Article  PubMed  CAS  Google Scholar 

  40. Griffiths G, Back R, Marsh M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J Cell Biol 1989;109:2703–20.

    Article  PubMed  CAS  Google Scholar 

  41. Furuno K, Ishikawa T, Akasaki K et al. Morphological localization of a major lysosomal membrane glycoprotein in the endocytic membrane system. J Biochem 1989;106:708–16.

    PubMed  CAS  Google Scholar 

  42. Kannan K, Stewart RM, Bounds W et al. Lysosome-associated membrane proteins h-LAMP1 (CD 107a) and h-LAMP2 (CD 107b) are activation-dependent cell surface glycoproteins in human peripheral blood mononuclear cells which mediate cell adhesion to vascular endothelium. Cell Immunol 1996;171:10–19.

    Article  PubMed  CAS  Google Scholar 

  43. Silverstein RL, Febbraio M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood 1992; 80:1470–75.

    PubMed  CAS  Google Scholar 

  44. Jadot M, Wattiaux R, Mainferme F et al. Soluble form of Lamp II in purified rat liver lysosomes. Biochem Biophys Res Commun 1996;223:353–59.

    Article  PubMed  CAS  Google Scholar 

  45. Cuervo AM, Dice JF. Regulation of lamp2a levels in the lysosomal membrane. Traffic 2000;1:570–83.

    Article  PubMed  CAS  Google Scholar 

  46. Gough NR, Fambrough DM. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J Cell Biol 1997; 137:1161–69.

    Article  PubMed  CAS  Google Scholar 

  47. Deng YP, Storrie B. Animal cell lysosomes rapidly exchange membrane proteins. Proc Natl Acad Sci USA 1988;85:3860–64.

    Article  PubMed  CAS  Google Scholar 

  48. Patterson GH, Lippincott-Schwartz J. A Photoactivatable GFP for selective photolabeling of proteins and cells. Science 2002;297:1873–77.

    Article  PubMed  CAS  Google Scholar 

  49. Karlsson K, Carlsson SR. Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/gamma-adaptin vesicles at the trans-Golgi network. J Biol Chem 1998;273:18966–73.

    Article  PubMed  CAS  Google Scholar 

  50. Honing S, Griffith J, Geuze HJ et al. The tyrosine-based lysosomal targeting signal in lamp-1 mediates sorting into Golgi-derived clathrin-coated vesicles. EMBO J 1996;15:5230–39.

    PubMed  CAS  Google Scholar 

  51. Peters C, von Figura K. Biogenesis of lysosomal membranes. FEBS Lett 1994;346:146–50.

    Article  Google Scholar 

  52. Hunziker W, Simmen T, Honing S. Trafficking of lysosomal membrane proteins in polarized kidney cells. Nephrologie 1996;17:347–50.

    PubMed  CAS  Google Scholar 

  53. Le Borgne R, Alconada A, Bauer U et al. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J Biol Chem 1998;273:29451–61.

    Article  PubMed  Google Scholar 

  54. Höning S, Hunziker W. Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgpl20 (lamp-1) in MDCk cells. J Cell Biol 1995;128:464–73.

    Article  Google Scholar 

  55. Rous BA, Reaves BJ, Ihrke G et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 2002;13:1071–82.

    Article  PubMed  CAS  Google Scholar 

  56. Forgac M. Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 1999;274:12951–54.

    Article  PubMed  CAS  Google Scholar 

  57. Frattini A, Orchard PJ, Sobacchi C et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000;25:343–46.

    Article  PubMed  CAS  Google Scholar 

  58. Li YP, Chen W, Liang Y et al. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 1999;23:447–51.

    Article  PubMed  CAS  Google Scholar 

  59. Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med 2002;347:111–21.

    Article  PubMed  Google Scholar 

  60. Town M, Jean G, Cherqui S et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 1998;18:319–24.

    Article  PubMed  CAS  Google Scholar 

  61. Agulhon C, Rostaing P, Ravassard P et al. Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: An in situ hybridization and immunohistochemical study. J Comp Neurol 2003;462:71–89.

    Article  PubMed  CAS  Google Scholar 

  62. Verheijen FW, Verbeek E, Aula N et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 1999;23:462–65.

    Article  PubMed  CAS  Google Scholar 

  63. Kveine M, Tenstad E, Dosen G et al. Characterization of the novel human transmembrane protein (TMEM9) that localizes to lysosomes and late endosomes. Biochem Biophys Res Commun 2002; 297:912–17.

    Article  PubMed  CAS  Google Scholar 

  64. Hogue DL, Nash C, Ling V et al. Lysosome-associated protein transmembrane 4 alpha (LAPTM4 alpha) requires two tandemly arranged tyrosine-based signals for sorting to lysosomes. Biochem J 2002;365:721–30.

    PubMed  CAS  Google Scholar 

  65. Vulevic B, Chen Z, Boyd JT et al. Cloning and characterization of human adenosine 5′-triphosphate-binding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res 2001; 61:3339–47.

    PubMed  CAS  Google Scholar 

  66. Zhang F, Zhang W, Liu L et al. Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J Biol Chem 2000; 275:23287–94.

    Article  PubMed  CAS  Google Scholar 

  67. Tabuchi M, Yoshimori T, Yamaguchi K et al. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells. J Biol Chem 2000;275:22220–28.

    Article  PubMed  CAS  Google Scholar 

  68. Simons K, Gruenberg J. Jamming the endosomal system: Lipid rafts and lysosomal storage diseases. Trends Cell Biol 2000;10:459–62.

    Article  PubMed  CAS  Google Scholar 

  69. Garver WS, Heidenreich RA. The Niemann-pick C proteins and trafficking of cholesterol through the late endosomal/lysosomal system. Curr Mol Med 2002:485–505.

    Google Scholar 

  70. Santavuori P. Neuronal ceroid-lipofuscinoses in childhood. Brain Dev 1988;10:80–83.

    PubMed  CAS  Google Scholar 

  71. Jarvela I, Lehtovirta M, Tikkanen R et al. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (INCL). Hum Mol Genet 1999;8:1091–98.

    Article  PubMed  CAS  Google Scholar 

  72. Pearce DA, Ferea T, Nosel SA et al. Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nat Genet 1999;22:55–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ihrke G, Gray SR, Luzio JP. Endolyn is a mucin-like type I membrane protein targeted to lysosomes by its cytoplasmic tail. Biochem J 2000;345:287–96.

    Article  PubMed  CAS  Google Scholar 

  74. Biederbick A, Rose S, Elsasser HP. A human intracellular apyrase-like protein, LALP70, localizes to lysosomal/autophagic vacuoles. J Cell Sci 1999;112:2473–84.

    PubMed  CAS  Google Scholar 

  75. Bame KJ, Rome LH. Genetic evidence for transmembrane acetylation by lysosomes. Science 1986; 233:1087–89.

    Article  PubMed  CAS  Google Scholar 

  76. Salaun B, de Saint-Vis B, Clair-Moninot V et al. Cloning and characterization of the mouse homologue of the human dendritic cell maturation marker CD208/DC-LAMP. Eur J Immunol 2003; 33:2619–29.

    Article  PubMed  CAS  Google Scholar 

  77. Suter A, Everts V, Boyde A et al. Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 2001;128:4899–910.

    PubMed  CAS  Google Scholar 

  78. Eskelinen EL, Schmidt CK, Neu S et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double deficient fibroblasts. Mol Biol Cell 2004;15:3132–3145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Saftig, P. (2005). Lysosomal Membrane Proteins. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_4

Download citation

Publish with us

Policies and ethics