Skip to main content

Dextran Amines: Versatile Tools for Anterograde and Retrograde Studies of Nervous System Connectivity

  • Chapter
Neuroanatomical Tract-Tracing 3

Abstract

Dextran amines are versatile and sensitive tools for anterograde and retrograde investigation of neural connectivity. Because of their tolerance of diverse fixatives, they are ideal for various light and electron microscopic studies. They can be iontophoretically or pressure-injected, and then depending on the type of dextran amine used and the type of detection method, visualized by transmitted light microscopy, fluorescence microscopy, or electron microscopy. High-molecular-weight biotinylated dextran amines (BDAs; 10 kDa) yield sensitive and exquisitely detailed labeling of axons and terminals, while low-molecular-weight BDAs (3 kDa) yield sensitive and detailed Golgi-like retrograde labeling of neurons. Labeling with the BDAs can be visualized with an avidin-biotinylated horseradish peroxidase (ABC) procedure followed by a standard or a metal-enhanced diaminobenzidine (DAB) reaction, or with any of several fluorescent probes that bind to biotin. Fluorescent dextran amines can be directly visualized by fluorescence microscopy or rendered suitable for transmitted light or electron microscopic viewing by immunohistochemical detection of the given fluorophore. The variety of dextran amines and the methods for their visualization make them well-suited for multiple-label studies. The dextran amines can also be combined with other anterograde or retrograde tracers, or intracellular labeling, and the disparate markers separately visualized either by multicolor DAB or by DAB-VIPĀ® labeling, or by multiple fluorescence viewing. In the same manner, pathway tracing with dextran amines and immunohistochemical labeling can be combined. The dextran amines are thus flexible and valuable pathway-tracing tools that have gained widespread popularity since being introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, J. S., Yamamoto, N., Yoshimoto, M., Sawai, N., and Ito, H., 1999, Visual thalamotelencephalic pathways in the sturgeon Acipenser, a non-teleous actinopterygina fish, Brain Behav. Evol. 53:156ā€“172.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Alisky, J. M., and Tolbert, D. L., 1994, Differential labeling of converging afferent pathways using biotinylated dextran amine and cholera toxin subunit B, J. Neurosci. Methods 52:143ā€“148.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Anderson, K. D., Karle, E. J., and Reiner, A., 1991, Ultrastructural single-and double-label immunohistochemical studies of substance P-containing terminals and dopaminergic neurons in the substantia nigra in pigeons, J. Comp. Neurol. 309:341ā€“362.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Anderson, K. D., Karle, E. J., and Reiner, A., 1994, A pre-embedding triple-label electron microscopic immunohistochemical method as applied to the study of multiple inputs to defined nigral neurons, J. Histochem. Cytochem. 42:49ā€“56.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Anderson, K. D., and Reiner, A., 1990, The extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization, J. Comp. Neurol. 295:339ā€“369.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Antal, M., Freund, T. F., Somogyi, P., and McIlhinney, R. A. J., 1990, Simultaneous anterograde labelling of two afferent pathways to the same target area with Phaseolus vulgaris leucoagglutinin and Phaseolus vulgaris leucoagglutinin conjugated to biotin or dinitrophenol, J. Chem. Neuroanat. 3:1ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Aston-Jones, G., and Card, J. P., 2000, Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations, J. Neurosci. Methods 103:51ā€“61.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Brandt, H. M., and Apkarian, A. V., 1992, Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey, J. Neurosci. Methods 45:35ā€“40.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chan, J., Aoki, C., and Pickel, V. M., 1990, Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding, J. Neurosci. Methods 33:113ā€“127.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chang, H. T., 1991, Anterograde transport of Lucifer Yellow-dextran conjugate, Brain Res. Bull. 26:813ā€“816.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen, A., and Aston-Jones, G., 1998, Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labeling and useful tool, Neuroscience 82:1151ā€“1163.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Coolen, L. M., Jansen, H. T., Goodman, R. L., Wood, R. I., and Lehman, M. N., 1999, A new method for simultaneous demonstration of anterograde and retrograde connections in the brain: co-injections of biotinylated dextran amine and the beta subunit of cholera toxin, J. Neurosci. Methods 91:1ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Cowan, R. L., and Wilson, C. J., 1994, Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex, J. Neurophysiol. 71: 17ā€“32.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system, Brain Res. 37:21ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Davila, J. C., Andreu, M. J., Real, M. J., Puelles, L., and Guirado, S., 2002, Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus, Eur. J. Neurosci. 16:267ā€“282.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dolleman-van der Weel, M. J., Wouterlood, F. G., and Witter, M. P., 1994, Multiple anterograde tracing combining Phaseolus vulgaris leucoagglutinin with rhodamine-and biotinconjugated dextran amine, J. Neurosci. Methods 51:9ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Edwards, S. B., 1972, The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method, Brain Res. 48: 45ā€“63.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Falini, B., De Solas, I., Halverson, C., Parker, J. W., and Taylor, C. R., 1982, Double labeledantigen method for demonstration of intracellular antigens in paraffin-embedded tissue, J. Histochem. Cytochem. 30:21ā€“26.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Faulkner, B., Brown, T. H., and Evinger, C., 1997, Identification and characterization of rat orbicularis oculi motoneurons using confocal laser scanning microscopy, Exp. Brain Res. 116:10ā€“19.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ferguson, I. A., Xian, C., Barati, E., and Rush, R. A., 2001, Comparison of wheat germ agglutininhorseradish peroxidase and biotinylated dextran for anterograde tracing of corticospinal tract following spinal cord injury, J. Neurosci. Methods 109:81ā€“89.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fink, R. P., and Heimer, L., 1967, Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system, Brain Res. 4:369ā€“374.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fritzsch, B., 1993, Fast axonal diffusion of 3000 molecular weight dextran amines, J. Neurosci. Methods 50:95ā€“103.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fritzsch, B., and Wilm, C., 1990, Dextran amines in neuronal tracing, Trends Neurosci. 13:14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gerfen, C. R., and Sawchenko, P. E., 1984, An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L), Brain Res. 290:219ā€“238.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gerfen, C. R., Sawchenko, P. E., and Carlsen, J., 1989. The PHA-L anterograde axonal tracing method, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods II, Recent Progress, New York: Plenum Publishing Corporation, pp. 19ā€“47.

    Google ScholarĀ 

  • Glover, J. C., Petursdottir, G., and Jansen, K. S., 1986, Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo, J. Neurosci. Methods 18:243ā€“254.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gonzalo, N., Moreno, A., Erdozain, M. A., Garcia, P., Vazquez, A., Castle, M., and Lanciego, J. L., 2001, A sequential protocol combining dual neuroanatomical tract-tracing with visualization of local circuit neurons within the striatum, J. Neurosci. Methods 111:59ā€“66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Groenewegen, H. J., and Wouterlood, F. G., 1990, Light and electron microscopic tracing of neuronal connections with Phaseolus vulgaris-leucoagglutinin (PHA-L), and combinations with other neuroanatomical techniques, In: Bjorklund, A., Hokfelt, T., Wouterlood, F. G., and van den Pol, A. N. (eds.), Handbook of Chemical Neuroanatomy. Volume 8. Analysis of Neuronal Microcircuits and Synaptic Interactions, Amsterdam: Elsevier Science Publishers, pp. 47ā€“124.

    Google ScholarĀ 

  • Guirado, S., Real, M. A., Davila, J. C., and Medina, L., 1999, The nucleus accumbens in the lizard Psammodromus algirus: chemoarchitecture and cortical afferent connections, J. Comp. Neurol. 405:15ā€“31.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hancock, M. B., 1986, Two-color immunoperoxidase staining: visualization of anatomic relationships between immunoreactive neural elements, Am. J. Anat. 175:343ā€“352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Haugland, R. P., 1996, Handbook of Fluorescent Probes and Research Chemicals, Eugene, OR: Molecular Probes Inc.

    Google ScholarĀ 

  • Hendrickson, A., and Edwards, S. B., 1978, The use of axonal transport for autoradiographic tracing of pathways in the central nervous system, In: Thompson, R. F., and Robertson, R. T. (eds.), Methods in Physiological Psychology. Volume 2. Neuroanatomical Research Techniques, New York: Academic Press, pp. 241ā€“290.

    Google ScholarĀ 

  • Hsu, S. M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29:577ā€“580.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hsu, S. M., and Soban, E., 1982, Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry, J. Histochem. Cytochem. 30:1079ā€“1082.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Izzo, P. N., 1991, A note on the use of biocytin in anterograde tracing studies in the central nervous system: applications at both light and electron microscopic level, J. Neurosci. Methods 36:155ā€“166.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jiang, X., Johnson, R. R., and Burkhalter, A., 1993, Visualization of dendritic morphology of cortical projection neurons by retrograde axonal tracing, J. Neurosci. Methods 50: 45ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jiao, Y., Medina, L., Veenman, C. L., Toledo, C., Puelles, L., and Reiner, A., 2000, Identification of the anterior nucleus of the ansa lenticularis in birds as the homologue of the mammalian subthalamic nucleus, J. Neurosci. 20:6998ā€“7010.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kaneko, T., Saeki, K., Lee, T., and Mizuno, N., 1996, Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR)-dextran amine by means of an acidic injection vehicle and antibodies against TMR, J. Neurosci. Methods 65: 157ā€“165.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kenigfest, N. B., Belekhova, M. G., Reperant, J., Rio, J. P., Vesselkin, N. P., and Ward, R., 2000, Pretectal connections in turtles with special reference to the visual thalamic centers: a hodological and gamma-aminobutyric acid-immunohistochemical study, J. Comp. Neurol. 426:31ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kincaid, A. E., and Wilson, C. J., 1996, Corticostriatal innervation of the patch and matrix in the rat neostriatum, J. Comp. Neurol. 374:578ā€“592.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • King, M. A., Louis, P. M., Hunter, B. E., and Walker, D.W., 1989, Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative, Brain Res. 497:361ā€“367.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kiss, A., Palkovits, M., and Skirboll, L. R., 1988, Light microscopic triple-colored immunohistochemical staining on the same vibratome section using the avidin-biotin-peroxidase complex technique, Histochemistry 88:353ā€“356.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kita, H., and Armstrong, W., 1991, A biocytin-containing compound N-(2-aminoethyl) biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin, J. Neurosci. Methods 37:141ā€“150.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lanciego, J. L., and Gimenez-Amaya, J. M., 1999, Notes on the combined use of V-VIP and DAB peroxidase substrates for the detection of colocalizating antigens, Histochem. Cell Biol. 111:305ā€“311.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lanciego, J. L., Goede, P. H., Witter, M. P., and Wouterlood, F. G., 1997, Use of peroxidase substrate VectorĀ® VIP for multiple staining in light microscopy, J. Neurosci. Methods 74:1ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lanciego, J. L., Luquin, M. R., Guillen, J., and Gimenez-Amaya, J. M., 1998a, Multiple neuroanatomical tracing in primates, Brain Res. Protoc. 2:323ā€“332.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lanciego, J. L., and Wouterlood, F. G., 1994, Dual anterograde axonal tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA), Neurosci. Protoc. 94-050-06.

    Google ScholarĀ 

  • Lanciego, J. L., Wouterlood, F. G., Erro, E., Arribas, J., Gonzalo, N., Urra, X., Cervantes, X., and Gimenez-Amaya, J. M., 2000, Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section, J. Neurosci. Methods 103:127ā€“135.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lanciego, J. L., Wouterlood, F. G., Erro, E., and Gimenez-Amaya, J. M., 1998b, Multiple axonal tracing: simultaneous detection of three tracers in the same section, Histochem. Cell Biol. 110:509ā€“515.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lanuza, E., Belekhova, M., Martinez-Marcos, A., Font, C., and Martinez-Garcia, F., 1998, Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal venricular ridge of the lizard Podarcis hispanica, Eur. J. Neurosci. 20:3517ā€“3534.

    ArticleĀ  Google ScholarĀ 

  • Lapper, S. R., and Bolam, J. P., 1991, The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin, J. Neurosci. Methods 39:163ā€“174.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lei, W. L., Jiao, Y., Del Mar, N., and Reiner, A., 2004, Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats, J. Neurosci. 24:8289ā€“8299.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Levey, A. I., Bolam, J. P., Rye, D. B., Hallanger, A. E., Demuth, R. M., Mesulam, M. M., and Wainer, B. H., 1986, A light and electron microscopic procedure for sequential double antigen localization using diaminobenzidine and benzidine dihydrochloride, J. Histochem. Cytochem. 34:1449ā€“1457.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu, W. L., Behbehani, M. M., and Shipley, M. T., 1993, Intracellular filling in fixed brain slices using miniruby, a fluorescent biocytin compound, Brain Res. 608:78ā€“86.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lopes-Correa, S. A., Grant, K., and Hoffmann, A., 1998, Afferent and efferent connections of the dorsolateral telencephalon in an electrosensory teleost, Gymnotus carapo, Brain Behav. Evol. 52:81ā€“98.

    ArticleĀ  Google ScholarĀ 

  • Luo, P., Haines, A., and Dessem, D., 2001, Elucidation of neuronal circuitry: protocol(s) combining intracellular labeling, neuroanatomical tracing and immunocytochemical methodologies, Brain Res. Protoc. 7:222ā€“234.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Medina, L., and Reiner, A., 1997, The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine, Neuroscience 81:773ā€“802.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Medina, L., Veenman, C. L., and Reiner, A., 1997, Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei, J. Comp. Neurol. 384:86ā€“108.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Naito, A., and Kita, H., 1994, The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine, Brain Res. 653:251ā€“257.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nance, D. M., and Burns, J., 1990, Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls, Brain Res. Bull. 25:139ā€“145.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Naumann, T., HƤrtig, W., and Frotscher, M., 2000, Retrograde tracing with Fluoro-Gold: different methods of tracer detection at ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies. J. Neurosci. Methods 103:11ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nauta, W. J. H., and Gygax, P. A., 1954, Silver impregnation of degenerating axons in the CNS. A modified technique, Stain Technol. 29:91ā€“93.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Novikov, L. N., 2001, Labeling of central projections of primary afferents in adult rats: a comparison between biotinylated dextran amine, neurobiotinĀ® and Phaseolus vulgarisleucoagglutinin, J. Neurosci. Methods 112:145ā€“154.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Novikova, L., Novikov, L., and Kellerth, J. O., 1997, Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates, J. Neurosci. Methods 74:9ā€“15.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ojima, H., and Takayanagi, M., 2001, Use of two anterograde axon tracers to label distinct cortical populations located in close proximity, J. Neurosci. Methods 104:177ā€“182.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Peters, A., 1985, The visual cortex of the rat, In: Peters, A., and Jones, E. G. (eds.), Cerebral Cortex. Volume 3. Visual Cortex, New York: Plenum Publishing Corporation, pp. 19ā€“80.

    Google ScholarĀ 

  • Piekut, D. T., and Knigge, K. M., 1984, Relationship of alpha MSH-specific neurons to the arcuate opiocortin neuronal system as determined by dual antigen immunocytochemical procedures, Peptides 5:1089ā€“1095.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pieribone, V. A, and Aston-Jones, G., 1993, The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei. Brain Res. 607:47ā€“53.

    ArticleĀ  Google ScholarĀ 

  • Pombal, M. A., Yanez, J., Marin, O., Gonzalez, A., and Anadon, R., 1999, Cholinergic and GABAergic neuronal elements in the pineal organ of lampreys, and tract-tracing observations of differential connections of pinealofugal neurons, Cell Tissue Res. 295:215ā€“223.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rajakumar, N., Elisevich, K., and Flumerfelt, B. A., 1993, Biotinylated dextran: a versatile anterograde and rerograde neuronal tracer, Brain Res. 607:47ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Reiner, A., Jiao, Y., Del Mar, N., Laverghetta, A. V., and Lei, W. L., 2003, Differential morphology of pyramidal-tract type and intratelencephalically-projecting type corticostriatal neurons and their intrastriatal terminals in rats, J. Comp. Neurol. 457:420ā€“440.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Reiner, A., Laverghetta, A. V., Meade, C. A., Cuthbertson, S. L., and Bottjer, S. W., 2004, An immunohistochemical and pathway tracing study on the striatopallidal organization of area X the in male zebra finch, J. Comp. Neurol. 469:239ā€“261.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Reiner, A., Veenman, C. L., and Honig, M. G., 1993, Anterograde tracing using biotinylated dextran amine, Neurosci. Protoc. 93-050-14.

    Google ScholarĀ 

  • Reiner, A., Veenman, C. L., Medina, L., Jiao, Y, Del Mar, N., and Honig, M. G., 2000, Pathway tracing using biotinylated dextran amines, J. Neurosci. Methods 103:23ā€“37.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Reiner, A., Zhang, D., and Eldred, W. D., 1996, Use of cholera toxin tracer reveals new details of the central retinal projections in turtles, Brain Behav. Evol. 48:307ā€“337.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Richmond, F. J, Gladdy, R., Creasy, J. L., Kitamura, S., Smits, E., and Thomson, D. B., 1995, Efficacy of seven retrograde tracers, compared in multiple-labeling studies of feline motoneurones, J. Neurosci. Methods 53:35ā€“46.

    ArticleĀ  Google ScholarĀ 

  • Scalia, F., Galoyan, S. M., Eisner, S., Haris, E., and Su, W., 1997, Biotinylated dextran amine and biocytin hydrochloride are useful tracers for the study of retinal projections in the frog, J. Neurosci. Methods 76:167ā€“175.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schmued, L. C., Beltramino, C., and Slikker, W., Jr., 1993, Intracranial injection of Fluoro-Gold results in the degeneration of local but not retrogradely labeled neurons, Brain Res. 626:71ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schmued, L. C., and Fallon, J. H., 1986, Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties, Brain Res. 377:147ā€“154.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Schmued, L. C., and Heimer, L., 1990, Iontophoretic injection of fluoro-gold and other fluorescent tracers, J. Histochem. Cytochem. 38:721ā€“723.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Schmued, L., Kyriakidis, K., and Heimer, L., 1990, In vivo anterograde and retrograde axonal transport of the fluorescent rhohamine-dextran-amine, Fluoro-Ruby, within the CNS, Brain Res. 526:127ā€“134.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sesack, S. R., Miner, L. H., and Omelchenko, N., 2006, Pre-embedding immunoelectron microscopy: applications for studies of the nervous system, In: Zaborszky, L., Wouterlood, F. G., and Lanciego, J. L. (eds.), Neuroanatomical Tract-Tracing Methods 3: Molecules-Neurons-Systems, New York: Springer/Kluwer/Plenum Publishers, pp. xxxā€“xxx..

    Google ScholarĀ 

  • Shimizu, T., Cox, K., Karten, H. J., and Britto, L. R. G., 1994, Cholera toxin mapping of retinal projections in pigeons (Columba livia), with emphasis on retinohypothalamic connections, Vis. Neurosci. 11:441ā€“446.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shu, S. Y., and Peterson, G. M., 1988, Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat, J. Neurosci. Methods 25:175ā€“180.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Staines, W. A., Meister, B., Melander, T., Nagy, J. I., and Hokfelt, T., 1988, Three-color immunofluorescence histochemistry allowing triple labeling within a single section, J. Histochem. Cytochem. 36:145ā€“151.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Striedter, G. F., 1994, The vocal control pathways in budgerigars differ from those in songbirds, J. Comp. Neurol. 343:35ā€“56.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tellegen, A. J, Arends, J. J., and Dubbeldam, J. L., 2001, The vestibular nuclei and vesitibuloreticular connections in the mallard (Anas platyrhynchos L.). An anterograde and retrograde tracing study, Brain Behav. Evol. 58:205ā€“217.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Todorova, N., and Rodziewicz, G. S., 1995, Biotin-dextran: fast retrograde tracing of sciatic nerve motoneurons, J. Neurosci. Methods 61:145ā€“150.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Torres, B., Perez-Perez, M. P., Herrero, L., Ligero, M., and Nunez-Abades, P. A., 2002, Neural substrata underlying tectal eye movement codification in goldfish, Brain Res. Bull. 57:345ā€“348.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Van Den Pol, A. N., and Decavel, C., 1990, Synaptic interactions between chemically defined neurons: dual ultrastructural immunocytochemical approaches, In: Bjorklund, A., Hokfelt, T., Wouterlood, F. G., and Van Den Pol, A. N. (eds.), Handbook of Chemical Neuroanatomy. Volume 8. Analysis of Neuronal Microcircuits and Synaptic Interactions, Amsterdam: Elsevier Science Publishers, pp. 199ā€“271.

    Google ScholarĀ 

  • Van Haeften, T., and Wouterlood, F. G., 2000, Neuroanatomical tracing at high resolution, J. Neurosci. Methods 103:107ā€“116.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Veenman, C. L., and Reiner, A., 1996, Ultrastructural morphology of synapses formed by corticostriatal terminals in the avian striatum, Brain Res. 707:1ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Veenman, C. L., Reiner, A., and Honig, M. G., 1992, Biotinylated dextran amine as an anterograde tracer for single-and double-label studies, J. Neurosci. Methods 41:239ā€“254.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Veenman, C. L., Wild, J. M., and Reiner, A., 1995, Organization of the avian ā€œcorticostriatalā€ projection system: a retrograde and anterograde pathway tracing study in pigeons, J. Comp. Neurol. 354:87ā€“126.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vercelli, A., Repici, M., Garbossa, D., and Grimaldi, A., 2000, Recent techniques for tracing pathways in the central nervous system of developing and adult mammals, Brain Res. Bull. 51:11ā€“28.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wang, Y., Major, D. E., and Karten, H. J., 2004, Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus domesticus), J. Comp. Neurol. 469:275ā€“297.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wessendorf, M.W., Appel, N. M., Molitor, T.W., and Elde, R. P., 1990, A method for immunofluorescent demonstration of three co-existing neurotransmitters in rat brain and spinal cord, using the fluorophores fluorescein, lissamine rhodamine and 7-amino-4-methylcoumarin-3-acetic acid, J. Histochem. Cytochem. 38:1859ā€“1877.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Wilson, C. J., 1987, Morphology and synaptic connections of crossed corticostriatal neurons in the rat, J. Comp. Neurol. 263:567ā€“580.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Woodson, W., Reiner, A., Anderson, K. D., and Karten, H. J., 1991, The distribution, laminar location and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labeling study, J. Comp. Neurol. 305:470ā€“488.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wouterlood, F. G., and Jorritsma-Byham, B., 1993, The anterograde neuroanatomical tracer biotinylated dextran amine: comparison with the tracer Phaseolus vulgaris leucoagglutinin in preparations for electron microscopy, J. Neurosci. Methods 48:75ā€“87.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wouterlood, F. G., Pattiselanno, A., Jorritsm-Byham, B., Arts, M. P. M., and Meredith, G. E., 1993, Connectional, immunocytochemical and ultrastructural characterization of neurons injected intracellularly in fixed brain tissue, In: Meredith, G. E., and Arbuthnott, G. W. (eds.), Morphological Investigations of Single Neurons in Vitro, New York: John Wiley and Sons, pp. 47ā€“169.

    Google ScholarĀ 

  • Wright, A. K., Norrie, L., Ingham, C. A., Hutton, A. M., Arbuthnott, G. W., 1999, Double anterograde tracing of the outputs from adjacent ā€œbarrel columnsā€ of rat somatosensory cortex neostriatal projection patterns and terminal ultrastructure, Neuroscience 88:119ā€“133.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wright, A. K., Ramanthan, S., and Arbuthnott, G. W., 2001, Identification of the source of the bilateral projection system from cortex to somatosensory neostriatum and an exploration of its physiological actions, Neuroscience 103:87ā€“96.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Xue, H. G., Yamamoto, N., Yoshimoto, M., Yang, C. Y., and Ito, H., 2001, Fiber connections of the nucleus isthmian in the carp (Cyprinus carpio) and tilapia (Oreochromis niloticus), Brain Behav. Evol. 58:185ā€“204.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zaborszky, L., and Heimer, L., 1989, Combination of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods II, Recent Progress, New York: Plenum Publishing Corporation, pp. 173ā€“199.

    Google ScholarĀ 

  • Zhou, M., and Grofova, I., 1995, The use of peroxidase substrate Vector VIP in electron microscopic single and double antigen localization, J. Neurosci. Methods 62:149ā€“158.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Reiner, A., Honig, M.G. (2006). Dextran Amines: Versatile Tools for Anterograde and Retrograde Studies of Nervous System Connectivity. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds) Neuroanatomical Tract-Tracing 3. Springer, Boston, MA . https://doi.org/10.1007/0-387-28942-9_10

Download citation

Publish with us

Policies and ethics