Skip to main content

Biogenesis and Function of Type IV Pili in Pseudomonas Species

  • Chapter
Pseudomonas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, A.A., Bodero, A.J., Free, P.D., and Mattick, J.S., 1996, Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol., 178:46–53.

    PubMed  CAS  Google Scholar 

  2. Alm, R.A., Hallinan, J.P., Watson, A.A., and Mattick, J.S., 1996, Fimbrial biogenesis genes of Pseudomonas aeruginosa-pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonoccocal PilC homologue. Mol. Microbiol., 22:161–173.

    PubMed  CAS  Google Scholar 

  3. Alm, R.A., and Mattick, J.S., 1995, Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa whose product possesses a prepilin-like leader sequence. Mol. Microbiol., 16:485–496.

    PubMed  CAS  Google Scholar 

  4. Alm, R.A., and Mattick, J.S., 1996, Identification of two genes with prepilin-like leader sequences required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol., 178:3809–3817.

    PubMed  CAS  Google Scholar 

  5. Audette, G.F., Irvin, R.T., and Hazes, B., 2004, Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry, 43:11427–11435.

    Article  PubMed  CAS  Google Scholar 

  6. Baker, N.R., Minor, V., Deal, C., Shahrabadi, M.S., Simpson, D.A., and Woods, D.E., 1991, Pseudomonas aeruginosa exoenzyme S is an adhesin. Infect. Immun., 59:2859–2863.

    PubMed  CAS  Google Scholar 

  7. Bally, M., Filloux, A., Akrim, M., Ball, G., Lazdunski, A., and Tommassen, J., 1992, Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol. Microbiol., 6:1121–1131.

    PubMed  CAS  Google Scholar 

  8. Barker, A.P., Vasil, A.I., Filloux, A., Ball, G., Wilderman, P.J., and Vasil, M.L., 2004, A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipids chemotaxis. Mol. Microbiol., 53:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  9. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L., 2002, The Pfam protein families database. Nucleic Acids Res., 30:276–280.

    Article  PubMed  CAS  Google Scholar 

  10. Baynham, P.J., and Wozniak, D.J., 1996, Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol., 22:97–108.

    PubMed  CAS  Google Scholar 

  11. Beatson, S.A., Whitchurch, C.B., Sargent, J.L., Levesque, R.C., and Mattick, J.S., 2002, Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J. Bacteriol., 184:3605–3613.

    Article  PubMed  CAS  Google Scholar 

  12. Beatson, S.A., Whitchurch, C.B., Semmler, A.B., and Mattick, J.S., 2002, Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J. Bacteriol., 184:3598–3604.

    Article  PubMed  CAS  Google Scholar 

  13. Bitter, W., 2003, Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol., 179:307–314.

    PubMed  CAS  Google Scholar 

  14. Bitter, W., Koster, M., Latijnhouwers, M., de Cock, H., and Tommassen, J., 1998, Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol., 27:209–219.

    Article  PubMed  CAS  Google Scholar 

  15. Blatch, G.L., and Lassle, M., 1999, The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays, 21:932–939.

    Article  PubMed  CAS  Google Scholar 

  16. Boat, T.F., and Matthews, L.W., 1973, Chemical composition of human tracheo-bronchial secretions, pp. 243–274. In M.J. Dulfano (ed.), Sputum. Fundamentals and Clinical Pathology. Charles C. Thomas, Springfield, IL, USA.

    Google Scholar 

  17. Boyd, J.M., 2000, Localization of the histidine kinase PilS to the poles of Pseudomonas aeruginosa and identification of a localization domain. Mol. Microbiol., 36:153–162.

    Article  PubMed  CAS  Google Scholar 

  18. Boyd, J.M., Koga, T., and Lory, S., 1994, Identification and characterization of PilS, an essential regulator of pilin expression in Pseudomonas aeruginosa. Mol. Gen. Genet., 243:565–574.

    Article  PubMed  CAS  Google Scholar 

  19. Boyd, J.M., and Lory, S., 1996, Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J. Bacteriol., 178:831–839.

    PubMed  CAS  Google Scholar 

  20. Bradley, D.E., 1965, The morphology and physiology of bacteriophages as revealed by the electron microscope. J. R. Microsc. Soc., 84:257–316.

    PubMed  CAS  Google Scholar 

  21. Bradley, D.E., 1966, The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid. J. Gen. Microbiol., 45:83–96.

    CAS  Google Scholar 

  22. Bradley, D.E., 1972, Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J. Gen. Microbiol., 72:303–319.

    PubMed  CAS  Google Scholar 

  23. Bradley, D.E., 1972, Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem. Biophys. Res. Commun., 47:142–149.

    Article  PubMed  CAS  Google Scholar 

  24. Bradley, D.E., 1972, Stimulation of pilus formation in Pseudomonas aeruginosa by RNA bacteriophage adsorption. Biochem. Biophys. Res. Commun., 47:1080–1087.

    Article  PubMed  CAS  Google Scholar 

  25. Bradley, D.E., 1972, A study of pili on Pseudomonas aeruginosa. Genet. Res. Cambridge, 19:39–51.

    Google Scholar 

  26. Bradley, D.E., 1973, A pilus dependent Pseudomonas aeruginosa bacteriophage with a long non-retractile tail. Virology, 51:489–492.

    Article  PubMed  CAS  Google Scholar 

  27. Bradley, D.E., 1973, The adsorption of the Pseudomonas aeruginosa filamentous bacteriophage Pf to its host. Can. J. Microbiol., 19:623–631.

    PubMed  CAS  Google Scholar 

  28. Bradley, D.E., 1974, The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology, 58:149–163.

    Article  PubMed  CAS  Google Scholar 

  29. Bradley, D.E., 1980, A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol., 26:146–154.

    PubMed  CAS  Google Scholar 

  30. Bradley, D.E., and Pitt, T.L., 1974, Pilus-dependence of four Pseudomonas aeruginosa bacteriophages with non-contractile tails. J. Gen. Virol., 23:1–15.

    Google Scholar 

  31. Bryan, R., Kube, D., Perez, A., Davis, P., and Prince, A., 1998, Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am. J. Respir. Cell. Mol. Biol., 19:269–277.

    PubMed  CAS  Google Scholar 

  32. Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T., Durkin, A.S., Kolonay, J.F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M.J., Haft, D.H., Nelson, W.C., Davidsen, T., Zafar, N., Zhou, L., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S.E., Feldblyum, T.V., D’Ascenzo, M., Deng, W.L., Ramos, A.R., Alfano, J.R., Cartinhour, S., Chatterjee, A.K., Delaney, T.P., Lazarowitz, S.G., Martin, G.B., Schneider, D.J., Tang, X., Bender, C.L., White, O., Fraser, C.M., and Collmer, A., 2003, The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC 3000. Proc. Natl. Acad. Sci. USA, 100:10181–10186.

    Article  PubMed  CAS  Google Scholar 

  33. Cachia, P.J., Glasier, L.M., Hodgins, R.R., Wong, W.Y., Irvin, R.T., and Hodges, R.S., 1998, The use of synthetic peptides in the design of a consensus sequence vaccine for Pseudomonas aeruginosa. J. Pept. Res., 52:289–299.

    Article  PubMed  CAS  Google Scholar 

  34. Cao, T.B., and Saier, M.H., Jr., 2001, Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology, 147:3201–3214.

    PubMed  CAS  Google Scholar 

  35. Carlson, C.A., Pierson, S.L., Rosen, J.J., and Ingraham, J.L., 1983, Pseudomonas stutzeri and related species undergo natural transformation. J. Bacteriol., 153:93–99.

    PubMed  CAS  Google Scholar 

  36. Carterson, A.J., Morici, L.A., Jackson, D.W., Frisk, A., Lizewski, S.E., Jupiter, R., Simpson, K., Kunz, D.A., Davis, S.H., Schurr, J.R., Hassett, D.J., and Schurr, M.J., 2004, The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J. Bacteriol., 186:6837–6844.

    Article  PubMed  CAS  Google Scholar 

  37. Castric, P., 1995, pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology, 141:1247–1254.

    Article  PubMed  CAS  Google Scholar 

  38. Castric, P., Cassels, F.J., and Carlson, R.W., 2001, Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem., 276:26479–26485.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, I., and Dubnau, D., 2004, DNA uptake during bacterial transformation. Nat. Rev. Microbiol., 2:241–249.

    Article  PubMed  CAS  Google Scholar 

  40. Chi, E., Mehl, T., Nunn, D., and Lory, S., 1991, Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect. Immun., 59:822–828.

    PubMed  CAS  Google Scholar 

  41. Chiang, P., and Burrows, L.L., 2003, Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J. Bacteriol., 185:2374–2378.

    Article  PubMed  CAS  Google Scholar 

  42. Christie, P.J., 2004, Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim. Biophys. Acta, 1694:219–234.

    Article  PubMed  CAS  Google Scholar 

  43. Collins, R.F., Davidsen, L., Derrick, J.P., Ford, R.C., and Tonjum, T., 2001, Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol., 183:3825–3832.

    Article  PubMed  CAS  Google Scholar 

  44. Collins, R.F., Ford, R.C., Kitmitto, A., Olsen, R.O., Tonjum, T., and Derrick, J.P., 2003, Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J. Bacteriol., 185:2611–2617.

    Article  PubMed  CAS  Google Scholar 

  45. Collins, R.F., Frye, S.A., Kitmitto, A., Ford, R.C., Tonjum, T., and Derrick, J.P., 2004, Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J. Biol. Chem., 279:39750–39756.

    Article  PubMed  CAS  Google Scholar 

  46. Comer, J.E., Marshall, M.A., Blanch, V.J., Deal, C.D., and Castric, P., 2002, Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect. Immun., 70:2837–2845.

    Article  PubMed  CAS  Google Scholar 

  47. Comolli, J.C., Hauser, A.R., Waite, L., Whitchurch, C.B., Mattick, J.S., and Engel, J.N., 1999, Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun., 67:3625–3630.

    PubMed  CAS  Google Scholar 

  48. Comolli, J.C., Waite, L.L., Mostov, K.E., and Engel, J.N., 1999, Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect. Immun., 67:3207–3214.

    PubMed  CAS  Google Scholar 

  49. Conrad, M.E., and Umbreit, J.N., 2002, Pathways of iron absorption. Blood Cells Mol. Dis., 29:336–355.

    Article  PubMed  CAS  Google Scholar 

  50. Craig, L., Pique, M.E., and Tainer, J.A., 2004, Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol., 2:363–378.

    Article  PubMed  CAS  Google Scholar 

  51. Craig, L., Taylor, R.K., Pique, M.E., Adair, B.D., Arvai, A.S., Singh, M., Lloyd, S.J., Shin, D.S., Getzoff, E.D., Yeager, M., Forest, K.T., and Tainer, J.A., 2003, Type IV pilin structure and assembly: x-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell, 11:1139–1150.

    Article  PubMed  CAS  Google Scholar 

  52. Croft, L., Beatson, S.A., Whitchurch, C.B., Huang, B., Blakeley, R.L., and Mattick, J.S., 2000, An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology, 146:2351–2364.

    PubMed  CAS  Google Scholar 

  53. Crowther, L.J., Anantha, R.P., and Donnenberg, M.S., 2004, The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol. Microbiol., 52:67–79.

    Article  PubMed  CAS  Google Scholar 

  54. D’Andrea, L.D., and Regan, L., 2003, TPR proteins: the versatile helix. Trends Biochem. Sci., 28:655–662.

    Article  PubMed  CAS  Google Scholar 

  55. D’Argenio, D.A., Gallagher, L.A., Berg, C.A., and Manoil, C., 2001, Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol., 183:1466–1471.

    Article  PubMed  CAS  Google Scholar 

  56. D’Argenio, D.A., and Miller, S.I., 2004, Cyclic di-GMP as a bacterial second messenger. Microbiology, 150:2497–2502.

    Article  PubMed  CAS  Google Scholar 

  57. Darzins, A., 1993, The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J. Bacteriol., 175:5934–5944.

    PubMed  CAS  Google Scholar 

  58. Darzins, A., 1994, Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosythesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol., 11:137–153.

    PubMed  CAS  Google Scholar 

  59. Darzins, A., 1995, The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol. Microbiol., 15:703–717.

    PubMed  CAS  Google Scholar 

  60. Davies, J., Dewar, A., Bush, A., Pitt, T., Gruenert, D., Geddes, D.M., and Alton, E.W., 1999, Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur. Respir. J., 13:565–570.

    Article  PubMed  CAS  Google Scholar 

  61. de Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudinat, O., Fuchey, C., Plotkowski, M.C., and Puchelle, E., 1996, Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect. Immun., 64:1582–1588.

    PubMed  Google Scholar 

  62. de Bentzmann, S., Roger, P., and Puchelle, E., 1996, Pseudomonas aeruginosa adherence to remodelling respiratory epithelium. Eur. Respir. J., 9:2145–2150.

    Article  PubMed  Google Scholar 

  63. de Groot, A., Heijnen, I., de Cock, H., Filloux, A., and Tommassen, J., 1994, Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. J. Bacteriol., 176:642–650.

    PubMed  Google Scholar 

  64. Demaneche, S., Kay, E., Gourbiere, F., and Simonet, P., 2001, Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl. Environ. Microbiol., 67:2617–2621.

    Article  PubMed  CAS  Google Scholar 

  65. Deziel, E., Comeau, Y., and Villemur, R., 2001, Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol., 183:1195–1204.

    Article  PubMed  CAS  Google Scholar 

  66. Dobbs, L.G., 1989, Pulmonary surfactant. Annu. Rev. Med., 40:431–446.

    Article  PubMed  CAS  Google Scholar 

  67. Doig, P., Paranchych, W., Sastry, P.A., and Irvin, R.T., 1989, Human buccal epithelial cell receptors of Pseudomonas aeruginosa: identification of glycoproteins with pilus binding activity. Can. J. Microbiol., 35:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  68. Doig, P., Sastry, P.A., Hodges, R.S., Lee, K.K., Paranchych, W., and Irvin, R.T., 1990, Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect. Immun., 58:124–130.

    PubMed  CAS  Google Scholar 

  69. Doig, P., Todd, T., Sastry, P.A., Lee, K.K., Hodges, R.S., Paranchych, W., and Irvin, R.T., 1988, Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect. Immun., 56:1641–1646.

    PubMed  CAS  Google Scholar 

  70. Drake, S.L., Sandstedt, S.A., and Koomey, M., 1997, PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol. Microbiol., 23:657–668.

    Article  PubMed  CAS  Google Scholar 

  71. Drenkard, E., and Ausubel, F.M., 2002, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416:740–743.

    Article  PubMed  CAS  Google Scholar 

  72. Duguid, J.P., and Anderson, E.S., 1967, Terminology of bacterial fimbriae, or pili, and their types. Nature, 215:89–90.

    Article  PubMed  CAS  Google Scholar 

  73. Errington, J., Daniel, R.A., and Scheffers, D.J., 2003, Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev., 67:52–65.

    Article  PubMed  CAS  Google Scholar 

  74. Ethier, J., and Boyd, J.M., 2000, Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinase. Mol. Microbiol., 38:891–903.

    Article  PubMed  CAS  Google Scholar 

  75. Farinha, M.A., Conway, B.D., Glasier, L.M., Ellert, N.W., Irvin, R.T., Sherburne, R., and Paranchych, W., 1994, Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect. Immun., 62:4118–4123.

    PubMed  CAS  Google Scholar 

  76. Filloux, A., 2004, The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta. 1694:163–179.

    Article  PubMed  CAS  Google Scholar 

  77. Folkhard, W., Marvin, D.A., Watts, T.H., and Paranchych, W., 1981, Structure of polar pili from Pseudomonas aeruginosa strains K and O. J. Mol. Biol., 149:79–93.

    Article  PubMed  CAS  Google Scholar 

  78. Forest, K.T., Dunham, S.A., Koomey, M., and Tainer, J.A., 1999, Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol. Microbiol., 31:743–752.

    Article  PubMed  CAS  Google Scholar 

  79. Forest, K.T., Satyshur, K.A., Worzalla, G.A., Hansen, J.K., and Herdendorf, T.J., 2004, The pilus-retraction protein PilT: ultrastructure of the biological assembly. Acta Crystallogr. D. Biol. Crystallogr., 60:978–982.

    Article  PubMed  CAS  Google Scholar 

  80. Frost, L.S., Carpenter, M., and Paranchych, W., 1978, N-methylphenylalanine at the N-terminus of pilin isolated from Pseudomonas aeruginosa K. Nature, 271:87–89.

    Article  PubMed  CAS  Google Scholar 

  81. Frost, L.S., and Paranchych, W., 1977, Composition and molecular weight of pili purified from Pseudomonas aeruginosa K. J. Bacteriol., 131:259–269.

    PubMed  CAS  Google Scholar 

  82. Fuerst, J.A., and Hayward, A.C., 1969, Surface appendages similar to fimbriae (pili) on Pseudomonas species. J. Gen. Microbiol., 58:227–237.

    PubMed  CAS  Google Scholar 

  83. Glessner, A., Smith, R.S., Iglewski, B.H., and Robinson, J.B., 1999, Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J. Bacteriol., 181:1623–1629.

    PubMed  CAS  Google Scholar 

  84. Graupner, S., Frey, V., Hashemi, R., Lorenz, M.G., Brandes, G., and Wackernagel, W., 2000, Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J. Bacteriol., 182:2184–2190.

    Article  PubMed  CAS  Google Scholar 

  85. Graupner, S., and Wackernagel, W., 2001, Identification and characterization of novel competence genes comA and exbB involved in natural genetic transformation of Pseudomonas stutzeri. Res. Microbiol., 152:451–460.

    Article  PubMed  CAS  Google Scholar 

  86. Graupner, S., and Wackernagel, W., 2001, Pseudomonas stutzeri has two closely related pilA genes (Type IV pilus structural protein) with opposite influences on natural genetic transformation. J. Bacteriol., 183:2359–2366.

    Article  PubMed  CAS  Google Scholar 

  87. Graupner, S., Weger, N., Sohni, M., and Wackernagel, W., 2001, Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J. Bacteriol., 183:4694–4701.

    Article  PubMed  CAS  Google Scholar 

  88. Gupta, S.K., Berk, R.S., Masinick, S., and Hazlett, L.D., 1994, Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect. Immun., 62:4572–4579.

    PubMed  CAS  Google Scholar 

  89. Hahn, H.P., 1997, The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa — a review. Gene, 192:99–108.

    Article  PubMed  CAS  Google Scholar 

  90. Hambrook, J., Titball, R., and Lindsay, C., 2004, The interaction of Pseudomonas aeruginosa PAK with human and animal respiratory tract cell lines. FEMS Microbiol. Lett., 238:49–55.

    PubMed  CAS  Google Scholar 

  91. Haussler, S., 2004, Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ. Microbiol., 6:546–551.

    Article  PubMed  Google Scholar 

  92. Haussler, S., Ziegler, I., Lottel, A., von Gotz, F., Rohde, M., Wehmhohner, D., Saravanamuthu, S., Tummler, B., and Steinmetz, I., 2003, Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J. Med. Microbiol., 52:295–301.

    Article  PubMed  Google Scholar 

  93. Hazes, B., Sastry, P.A., Hayakawa, K., Read, R.J., and Irvin, R.T., 2000, Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J. Mol. Biol., 299:1005–1017.

    Article  PubMed  CAS  Google Scholar 

  94. Hazlett, L.D., Moon, M.M., Singh, A., Berk, R.S., and Rudner, X.L., 1991, Analysis of adhesion, piliation, protease production and ocular infectivity of several P. aeruginosa strains. Curr. Eye Res., 10:351–362.

    PubMed  CAS  Google Scholar 

  95. Hazlett, L.D., Moon, M.M., Strejc, M., and Berk, R.S., 1987, Evidence for N-acetylmannosamine as an ocular receptor for P. aeruginosa adherence to scarified cornea. Invest. Ophthalmol. Vis. Sci., 28:1978–1985.

    PubMed  CAS  Google Scholar 

  96. Hendrickson, E.L., Plotnikova, J., Mahajan-Miklos, S., Rahme, L.G., and Ausubel, F.M., 2001, Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J. Bacteriol., 183:7126–7134.

    Article  PubMed  CAS  Google Scholar 

  97. Henrichsen, J., 1972, Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36:478–503.

    PubMed  CAS  Google Scholar 

  98. Henrichsen, J., 1975, The occurrence of twitching motility among gram-negative bacteria. Acta Pathol. Microbiol. Scand. [B], 83:171–178.

    CAS  Google Scholar 

  99. Henrichsen, J., 1983, Twitching motility. Annu. Rev. Microbiol., 37:81–93.

    Article  PubMed  CAS  Google Scholar 

  100. Henriksen, S.D., and Henrichsen, J., 1975, Twitching motility and possession of polar fimbriae in spreading Streptococcus sanguis isolates from the human throat. Acta. Pathol. Microbiol. Scand. [B], 83:133–140.

    CAS  Google Scholar 

  101. Herdendorf, T.J., McCaslin, D.R., and Forest, K.T., 2002, Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J. Bacteriol., 184:6465–6471.

    Article  PubMed  CAS  Google Scholar 

  102. Hobbs, M., Collie, E.S., Free, P.D., Livingston, S.P., and Mattick, J.S., 1993, PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 7:669–682.

    PubMed  CAS  Google Scholar 

  103. Hogan, D.A., and Kolter, R., 2002, Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 296:2229–2232.

    Article  PubMed  CAS  Google Scholar 

  104. Houwink, A., and van Iterson, W., 1950, Electron microscopical observations on bacterial cytology. II. A study on flagellation. Biochim. Biophys. Acta, 5:10–44.

    Article  PubMed  CAS  Google Scholar 

  105. Huang, B., Ru, K., Yuan, Z., Whitchurch, C.B., and Mattick, J.S., 2004, tonB3 is required for normal twitching motility and extracellular assembly of type IV pili. J. Bacteriol., 186:4387–4389.

    Article  PubMed  CAS  Google Scholar 

  106. Huang, B., Whitchurch, C.B., and Mattick, J.S., 2003, FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J. Bacteriol., 185:7068–7076.

    Article  PubMed  CAS  Google Scholar 

  107. Imundo, L., Barasch, J., Prince, A., and Al-Awqati, Q., 1995, Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc. Natl. Acad. Sci. USA, 92:3019–3023.

    Article  PubMed  CAS  Google Scholar 

  108. Irvin, R.T., Doig, P., Lee, K.K., Sastry, P.A., Paranchych, W., Todd, T., and Hodges, R.S., 1989, Characterization of the Pseudomonas aeruginosa pilus adhesin: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain. Infect. Immun., 57:3720–3726.

    PubMed  CAS  Google Scholar 

  109. Ishimoto, K.S., and Lory, S., 1989, Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc. Natl. Acad. Sci. USA, 86:1954–1957.

    Article  PubMed  CAS  Google Scholar 

  110. Ishimoto, K.S., and Lory, S., 1992, Identification of pilR, which encodes a transcriptional activator of the Pseudomonas aeruginosa pilin gene. J. Bacteriol., 174:3514–3521.

    PubMed  CAS  Google Scholar 

  111. Jenal, U., 2004, Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr. Opin. Microbiol., 7:185–191.

    Article  PubMed  CAS  Google Scholar 

  112. Jendrossek, V., Fillon, S., Belka, C., Muller, I., Puttkammer, B., and Lang, F., 2003, Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect. Immun., 71:2665–2673.

    Article  PubMed  CAS  Google Scholar 

  113. Jin, S., Ishimoto, K.S., and Lory, S., 1994, PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter. Mol. Microbiol., 14:1049–1057.

    PubMed  CAS  Google Scholar 

  114. Johanson, W.G., Jr., Higuchi, J.H., Chaudhuri, T.R., and Woods, D.E., 1980, Bacterial adherence to epithelial cells in bacillary colonization of the respiratory tract. Am. Rev. Respir. Dis., 121:55–63.

    PubMed  Google Scholar 

  115. Johanson, W.G., Jr., Pierce, A.K., Sanford, J.P., and Thomas, G.D., 1972, Nosocomial respiratory infections with gram-negative bacilli. The significance of colonization of the respiratory tract. Ann. Intern. Med., 77:701–706.

    PubMed  Google Scholar 

  116. Johanson, W.G., Jr., Woods, D.E., and Chaudhuri, T., 1979, Association of respiratory tract colonization with adherence of gram-negative bacilli to epithelial cells. J. Infect. Dis., 139:667–673.

    PubMed  Google Scholar 

  117. Kang, P.J., Hauser, A.R., Apodaca, G., Fleiszig, S.M., Wiener-Kronish, J., Mostov, K., and Engel, J.N., 1997, Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol. Microbiol., 24:1249–1262.

    Article  PubMed  CAS  Google Scholar 

  118. Kearns, D.B., Robinson, J., and Shimkets, L.J., 2001, Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J. Bacteriol., 183:763–767.

    Article  PubMed  CAS  Google Scholar 

  119. Kelly, N.M., Kluftinger, J.L., Pasloske, B.L., Paranchych, W., and Hancock, R.E., 1989, Pseudomonas aeruginosa pili as ligands for nonopsonic phagocytosis by fibronectin-stimulated macrophages. Infect. Immun., 57:3841–3845.

    PubMed  CAS  Google Scholar 

  120. Kelly-Wintenberg, K., and Montie, T.C., 1994, Chemotaxis to oligopeptides by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 60:363–367.

    PubMed  CAS  Google Scholar 

  121. Klausen, M., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T., 2003, Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol., 50:61–68.

    Article  PubMed  CAS  Google Scholar 

  122. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T., 2003, Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol., 48:1511–1524.

    Article  PubMed  CAS  Google Scholar 

  123. Koga, T., Ishimoto, K., and Lory, S., 1993, Genetic and functional characterization of the gene cluster specifying expression of Pseudomonas aeruginosa pili. Infect. Immun., 61:1371–1377.

    PubMed  CAS  Google Scholar 

  124. Kornberg, A., Rao, N.N., and Ault-Riche, D., 1999, Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem., 68:89–125.

    Article  PubMed  CAS  Google Scholar 

  125. Krivan, H.C., Ginsburg, V., and Roberts, D.D., 1988, Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch. Biochem. Biophys., 260:493–496.

    Article  PubMed  CAS  Google Scholar 

  126. Krivan, H.C., Roberts, D.D., and Ginsburg, V., 1988, Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA, 85:6157–6161.

    Article  PubMed  CAS  Google Scholar 

  127. Kus, J.V., Tullis, E., Cvitkovitch, D.G., and Burrows, L.L., 2004, Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology, 150:1315–1326.

    Article  PubMed  CAS  Google Scholar 

  128. Lautrop, H., 1961, Bacterium anitratum transferred to the genus Cytophaga. Int. Bull. Bacteriol. Nomencl., 11:107–108.

    Google Scholar 

  129. Lautrop, H., 1965, Gliding motility in bacteria as a taxonomic criterion. Publ. Fac. Sci. Univ. J. E. Purkyne, ser K, 35:322–327.

    Google Scholar 

  130. Lee, K.K., Doig, P., Irvin, R.T., Paranchych, W., and Hodges, R.S., 1989, Mapping the surface regions of Pseudomonas aeruginosa PAK pilin: the importance of the C-terminal region for adherence to human buccal epithelial cells. Mol. Microbiol., 3:1493–1499.

    PubMed  CAS  Google Scholar 

  131. Lee, K.K., Sastry, P.A., Paranchych, W., and Hodges, R.S., 1989, Immunological studies of the disulfide bridge region of Pseudomonas aeruginosa PAK and PAO pilins, using anti-PAK pilus and antipeptide antibodies. Infect. Immun., 57:520–526.

    PubMed  CAS  Google Scholar 

  132. Lee, K.K., Sheth, H.B., Wong, W.Y., Sherburne, R., Paranchych, W., Hodges, R.S., Lingwood, C.A., Krivan, H., and Irvin, R.T., 1994, The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol. Microbiol., 11:705–713.

    PubMed  CAS  Google Scholar 

  133. Lee, K.K., Yu, L., Macdonald, D.L., Paranchych, W., Hodges, R.S., and Irvin, R.T., 1996, Anti-adhesin antibodies that recognize a receptor-binding motif (adhesintope) inhibit pilus/fimbrial-mediated adherence of Pseudomonas aeruginosa and Candida albicans to asialo-GM1 receptors and human buccal epithelial cell surface receptors. Can. J. Microbiol., 42:479–486.

    Article  PubMed  CAS  Google Scholar 

  134. Lizewski, S.E., Schurr, J.R., Jackson, D.W., Frisk, A., Carterson, A.J., and Schurr, M.J., 2004, Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J. Bacteriol., 186:5672–5684.

    Article  PubMed  CAS  Google Scholar 

  135. Lorenz, M.G., and Wackernagel, W., 1994, Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev., 58:563–602.

    PubMed  CAS  Google Scholar 

  136. Lowe, J., van den Ent, F., and Amos, L.A., 2004, Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct., 33:177–198.

    Article  PubMed  CAS  Google Scholar 

  137. Lu, H.M., Motley, S.T., and Lory, S., 1997, Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol. Microbiol., 25:247–259.

    Article  PubMed  CAS  Google Scholar 

  138. Lugtenberg, B.J., Chin, A.W. T.F., and Bloemberg, G.V., 2002, Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek, 81:373–383.

    Article  PubMed  CAS  Google Scholar 

  139. Mahenthiralingam, E., and Speert, D.P., 1995, Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum. Infect. Immun., 63:4519–4523.

    PubMed  CAS  Google Scholar 

  140. Maier, B., Potter, L., So, M., Long, C.D., Seifert, H.S., and Sheetz, M.P., 2002, Single pilus motor forces exceed 100 pN. Proc. Natl. Acad. Sci. USA, 99:16012–16017.

    Article  PubMed  CAS  Google Scholar 

  141. Martin, P.R., Hobbs, M., Free, P.D., Jeske, Y., and Mattick, J.S., 1993, Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 9:857–868.

    PubMed  CAS  Google Scholar 

  142. Martin, P.R., Watson, A.A., McCaul, T.F., and Mattick, J.S., 1995, Characterization of a fivegene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 16:497–508.

    PubMed  CAS  Google Scholar 

  143. Mattick, J.S., 2002, Type IV pili and twitching motility. Annu. Rev. Microbiol., 56:289–314.

    Article  PubMed  CAS  Google Scholar 

  144. Merz, A.J., and Forest, K.T., 2002, Bacterial surface motility: slime trails, grappling hooks and nozzles. Curr. Biol., 12:R297–R303.

    Article  PubMed  CAS  Google Scholar 

  145. Merz, A.J., So, M., and Sheetz, M.P., 2000, Pilus retraction powers bacterial twitching motility. Nature, 407:98–102.

    Article  PubMed  CAS  Google Scholar 

  146. Meyer, K.C., Sharma, A., Brown, R., Weatherly, M., Moya, F.R., Lewandoski, J., and Zimmerman, J.J., 2000, Function and composition of pulmonary surfactant and surfactant-derived fatty acid profiles are altered in young adults with cystic fibrosis. Chest, 118:164–174.

    Article  PubMed  CAS  Google Scholar 

  147. Morand, P.C., Bille, E., Morelle, S., Eugene, E., Beretti, J.L., Wolfgang, M., Meyer, T.F., Koomey, M., and Nassif, X., 2004, Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins. EMBO J., 23:2009–2017.

    Article  PubMed  CAS  Google Scholar 

  148. Nelson, J.W., Tredgett, M.W., Sheehan, J.K., Thornton, D.J., Notman, D., and Govan, J.R., 1990, Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect. Immun., 58:1489–1495.

    PubMed  CAS  Google Scholar 

  149. Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J.A., Timmis, K.N., Dusterhoft, A., Tummler, B., and Fraser, C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    Article  PubMed  CAS  Google Scholar 

  150. Nikolskaya, A.N., and Galperin, M.Y., 2002, A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res., 30:2453–2459.

    Article  PubMed  CAS  Google Scholar 

  151. Nunn, D., Bergman, S., and Lory, S., 1990, Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J. Bacteriol., 172:2911–2919.

    PubMed  CAS  Google Scholar 

  152. Nunn, D.N., and Lory, S., 1991, Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl. Acad. Sci. USA, 88:3281–3285.

    Article  PubMed  CAS  Google Scholar 

  153. O’Toole, G.A., Gibbs, K.A., Hager, P.W., Phibbs, P.V., Jr., and Kolter, R., 2000, The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol., 182:425–431.

    Article  PubMed  CAS  Google Scholar 

  154. O’Toole, G.A., and Kolter, R., 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30:295–304.

    Article  PubMed  CAS  Google Scholar 

  155. Okamoto, S., and Ohmori, M., 2002, The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP. Plant Cell Physiol., 43:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  156. Ottow, J.C., 1975, Ecology, physiology, and genetics of fimbriae and pili. Annu. Rev. Microbiol., 29:79–108.

    Article  PubMed  CAS  Google Scholar 

  157. Paranchych, W., Frost, L.S., and Carpenter, M., 1978, N-Terminal amino acid sequence of pilin isolated from Pseudomonas aeruginosa. J. Bacteriol., 134:1179–1180.

    PubMed  CAS  Google Scholar 

  158. Paranchych, W., Sastry, P.A., Drake, D., Pearlstone, J.R., and Smillie, L.B., 1985, Pseudomonas pili. Studies on antigenic determinants and mammalian cell receptors. Antibiot. Chemother., 36:49–57.

    PubMed  CAS  Google Scholar 

  159. Paranchych, W., Sastry, P.A., Frost, L.S., Carpenter, M., Armstrong, G.D., and Watts, T.H., 1979, Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO. Can. J. Microbiol., 25:1175–1181.

    Article  PubMed  CAS  Google Scholar 

  160. Parge, H.E., Forest, K.T., Hickey, M.J., Christensen, D.A., Getzoff, E.D., and Tainer, J.A., 1995, Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature, 378:32–38.

    Article  PubMed  CAS  Google Scholar 

  161. Pasloske, B.L., Finlay, B.B., and Paranchych, W., 1985, Cloning and sequencing of the Pseudomonas aeruginosa PAK pilin gene. FEBS Lett., 183:408–412.

    Article  PubMed  CAS  Google Scholar 

  162. Peabody, C.R., Chung, Y.J., Yen, M.R., Vidal-Ingigliardi, D., Pugsley, A.P., and Saier, M.H., Jr., 2003, Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology, 149:3051–3072.

    Article  PubMed  CAS  Google Scholar 

  163. Pegden, R.S., Larson, M.A., Grant, R.J., and Morrison, M., 1998, Adherence of the grampositive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J. Bacteriol., 180:5921–5927.

    PubMed  CAS  Google Scholar 

  164. Planet, P.J., Kachlany, S.C., DeSalle, R., and Figurski, D.H., 2001, Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl. Acad. Sci. USA, 98:2503–2508.

    Article  PubMed  CAS  Google Scholar 

  165. Ponting, C.P., and Aravind, L., 1997, PAS: a multifunctional domain family comes to light. Curr. Biol., 7:R674–R677.

    Article  PubMed  CAS  Google Scholar 

  166. Postle, K., and Kadner, R.J., 2003, Touch and go: tying TonB to transport. Mol. Microbiol., 49:869–882.

    Article  PubMed  CAS  Google Scholar 

  167. Powell, J.J., Jugdaohsingh, R., and Thompson, R.P., 1999, The regulation of mineral absorption in the gastrointestinal tract. Proc. Nutr. Soc., 58:147–153.

    Article  PubMed  CAS  Google Scholar 

  168. Rakotoarivonina, H., Jubelin, G., Hebraud, M., Gaillard-Martinie, B., Forano, E., and Mosoni, P., 2002, Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili. Microbiology, 148:1871–1880.

    PubMed  CAS  Google Scholar 

  169. Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-González, M.I., Rojas, A., Terán, W., and Segura, A., 2002, Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol., 56:743–768.

    Article  PubMed  CAS  Google Scholar 

  170. Ramphal, R., and Arora, S.K., 2001, Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj. J., 18:709–713.

    Article  PubMed  CAS  Google Scholar 

  171. Ramphal, R., Koo, L., Ishimoto, K.S., Totten, P.A., Lara, J.C., and Lory, S., 1991, Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect. Immun., 59:1307–1311.

    PubMed  CAS  Google Scholar 

  172. Ramphal, R., McNiece, M.T., and Polack, F.M., 1981, Adherence of Pseudomonas aeruginosa to the injured cornea: a step in the pathogenesis of corneal infections. Ann. Ophthalmol., 13:421–425.

    PubMed  CAS  Google Scholar 

  173. Ramphal, R., and Pyle, M., 1983, Evidence for mucins and sialic acid as receptors for Pseudomonas aeruginosa in the lower respiratory tract. Infect. Immun., 41:339–344.

    PubMed  CAS  Google Scholar 

  174. Ramphal, R., Sadoff, J.C., Pyle, M., and Silipigni, J.D., 1984, Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium. Infect. Immun., 44:38–40.

    PubMed  CAS  Google Scholar 

  175. Ramphal, R., Small, P.M., Shands, J.W., Jr., Fischlschweiger, W., and Small, P.A., Jr., 1980, Adherence of Pseudomonas aeruginosa to tracheal cells injured by influenza infection or by endotracheal intubation. Infect. Immun., 27:614–619.

    PubMed  CAS  Google Scholar 

  176. Rashid, M.H., and Kornberg, A., 2000, Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 97:4885–4890.

    Article  PubMed  CAS  Google Scholar 

  177. Robien, M.A., Krumm, B.E., Sandkvist, M., and Hol, W.G., 2003, Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol., 333:657–674.

    Article  PubMed  CAS  Google Scholar 

  178. Rodriguez-Soto, J.P., and Kaiser, D., 1997, Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J. Bacteriol., 179:4372–4381.

    PubMed  CAS  Google Scholar 

  179. Rodriguez-Soto, J.P., and Kaiser, D., 1997, The tgl gene: social motility and stimulation in Myxococcus xanthus. J. Bacteriol., 179:4361–4371.

    PubMed  CAS  Google Scholar 

  180. Roine, E., Nunn, D.N., Paulin, L., and Romantschuk, M., 1996, Characterization of genes required for pilus expression in Pseudomonas syringae pathovar phaseolicola. J. Bacteriol., 178:410–417.

    Article  PubMed  CAS  Google Scholar 

  181. Roine, E., Raineri, D.M., Romantschuk, M., Wilson, M., and Nunn, D.N., 1998, Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact., 11:1048–1056.

    PubMed  CAS  Google Scholar 

  182. Romantschuk, M., 1992, Attachment of plant pathogenic bacteria to plant surfaces. Annu. Rev. Phytopathol., 30:225–243.

    Article  CAS  PubMed  Google Scholar 

  183. Romantschuk, M., and Bamford, D.H., 1985, Function of pili in bacteriophage phi 6 penetration. J. Gen. Virol., 66:2461–2469.

    Article  PubMed  CAS  Google Scholar 

  184. Romantschuk, M., and Bamford, D.H., 1986, The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb. Pathog., 1:139–148.

    Article  PubMed  CAS  Google Scholar 

  185. Romantschuk, M., Nurmiaho-Lassila, E.-L., Roine, E., and Suoniemi, A., 1993, Pilusmediated adsorption of Pseudomonas syringae to host and nonhost plant leaves. J. Gen. Microbiol., 139:2252–2260.

    Google Scholar 

  186. Rose, M.C., 1992, Mucins: structure, function, and role in pulmonary diseases. Am. J. Physiol., 263:L413–L429.

    PubMed  CAS  Google Scholar 

  187. Rudner, X.L., Berk, R.S., and Hazlett, L.D., 1993, Immunization with homologous Pseudomonas aeruginosa pili protects against ocular disease. Reg. Immunol., 5:245–252.

    PubMed  CAS  Google Scholar 

  188. Russell, M.A., and Darzins, A., 1994, The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol. Microbiol., 13:973–985.

    PubMed  CAS  Google Scholar 

  189. Saiman, L., Ishimoto, K., Lory, S., and Prince, A., 1990, The effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial monolayers. J. Infect. Dis., 161:541–548.

    PubMed  CAS  Google Scholar 

  190. Sakai, D., Horiuchi, T., and Komano, T., 2001, Atpase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J. Biol. Chem., 276:17968–17975.

    Article  PubMed  CAS  Google Scholar 

  191. Sandkvist, M., 2001, Biology of type II secretion. Mol. Microbiol., 40:271–283.

    Article  PubMed  CAS  Google Scholar 

  192. Sastry, P.A., Finlay, B.B., Pasloske, B.L., Paranchych, W., Pearlstone, J.R., and Smillie, L.B., 1985, Comparative studies of the amino acid and nucleotide sequences of pilin derived from Pseudomonas aeruginosa PAK and PAO. J. Bacteriol., 164:571–577.

    PubMed  CAS  Google Scholar 

  193. Sastry, P.A., Pearlstone, J.R., Smillie, L.B., and Paranchych, W., 1983, Amino acid sequence of pilin isolated from pseudomonas aeruginosa PAK. FEBS Lett., 151:253–256.

    Article  PubMed  CAS  Google Scholar 

  194. Sato, H., and Okinaga, K., 1987, Role of pili in the adherence of Pseudomonas aeruginosa to mouse epidermal cells. Infect. Immun., 55:1774–1778.

    PubMed  CAS  Google Scholar 

  195. Sauvonnet, N., Vignon, G., Pugsley, A.P., and Gounon, P., 2000, Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J., 19:2221–2228.

    Article  PubMed  CAS  Google Scholar 

  196. Savvides, S.N., Yeo, H.J., Beck, M.R., Blaesing, F., Lurz, R., Lanka, E., Buhrdorf, R., Fischer, W., Haas, R., and Waksman, G., 2003, VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J., 22:1969–1980.

    Article  PubMed  CAS  Google Scholar 

  197. Schroeder, T.H., Zaidi, T., and Pier, G.B., 2001, Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM(1) on epithelial cells. Infect. Immun., 69:719–729.

    Article  PubMed  CAS  Google Scholar 

  198. Semmler, A.B.T., Whitchurch, C.B., Leech, A.J., and Mattick, J.S., 2000, Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa. Microbiology, 146:1331–1332.

    Google Scholar 

  199. Semmler, A.B.T., Whitchurch, C.B., and Mattick, J.S., 1999, A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology, 145:2863–2873.

    PubMed  CAS  Google Scholar 

  200. Sheth, H.B., Glasier, L.M., Ellert, N.W., Cachia, P., Kohn, W., Lee, K.K., Paranchych, W., Hodges, R.S., and Irvin, R.T., 1995, Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomed. Pept. Proteins Nucleic Acids, 1:141–148.

    PubMed  CAS  Google Scholar 

  201. Sheth, H.B., Lee, K.K., Wong, W.Y., Srivastava, G., Hindsgaul, O., Hodges, R.S., Paranchych, W., and Irvin, R.T., 1994, The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence beta GalNAc(1-4)beta Gal found in glycosphingolipids asialo-GM1 and asialo-GM2. Mol. Microbiol., 11:715–723.

    PubMed  CAS  Google Scholar 

  202. Simm, R., Morr, M., Kader, A., Nimtz, M., and Romling, U., 2004, GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol., 53:1123–1134.

    Article  PubMed  CAS  Google Scholar 

  203. Simunovic, V., Gherardini, F.C., and Shimkets, L.J., 2003, Membrane localization of motility, signaling, and polyketide synthetase proteins in Myxococcus xanthus. J. Bacteriol., 185:5066–5075.

    Article  PubMed  CAS  Google Scholar 

  204. Singh, A., Hazlett, L., and Berk, R.S., 1991, Characterization of pseudomonal adherence to unwounded cornea. Invest. Ophthalmol. Vis. Sci., 32:2096–2104.

    PubMed  CAS  Google Scholar 

  205. Singh, P.K., Parsek, M.R., Greenberg, E.P., and Welsh, M.J., 2002, A component of innate immunity prevents bacterial biofilm development. Nature, 417:552–555.

    Article  PubMed  CAS  Google Scholar 

  206. Skerker, J.M., and Berg, H.C., 2001, Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA, 98:6901–6904.

    Article  PubMed  CAS  Google Scholar 

  207. Smart, W., Sastry, P.A., Paranchych, W., and Singh, B., 1988, Mapping of the T-cell recognition sites of Pseudomonas aeruginosa PAK polar pili. Infect. Immun., 56:18–23.

    PubMed  CAS  Google Scholar 

  208. Sourjik, V., and Schmitt, R., 1998, Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry, 37:2327–2335.

    Article  PubMed  CAS  Google Scholar 

  209. Speert, D.P., Loh, B.A., Cabral, D.A., and Salit, I.E., 1986, Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and hydrophobicity. Infect. Immun., 53:207–212.

    PubMed  CAS  Google Scholar 

  210. Stock, A.M., Robinson, V.L., and Goudreau, P.N., 2000, Two-component signal transduction. Annu. Rev. Biochem., 69:183–215.

    Article  PubMed  CAS  Google Scholar 

  211. Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W., 2002, Biofilms as complex differentiated communities. Annu. Rev. Microbiol., 56:187–209.

    Article  PubMed  CAS  Google Scholar 

  212. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  213. Strom, M.S., Nunn, D.N., and Lory, S., 1993, A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA, 90:2404–2408.

    Article  PubMed  CAS  Google Scholar 

  214. Suh, S.J., Silo-Suh, L., Woods, D.E., Hassett, D.J., West, S.E., and Ohman, D.E., 1999, Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol., 181:3890–3897.

    PubMed  CAS  Google Scholar 

  215. Sun, H., Zusman, D.R., and Shi, W., 2000, Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol., 10:1143–1146.

    Article  PubMed  CAS  Google Scholar 

  216. Sundin, C., Wolfgang, M.C., Lory, S., Forsberg, A., and Frithz-Lindsten, E., 2002, Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb. Pathog., 33:265–277.

    Article  PubMed  CAS  Google Scholar 

  217. Tang, H., Kays, M., and Prince, A., 1995, Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect. Immun., 63:1278–1285.

    PubMed  CAS  Google Scholar 

  218. Totten, P.A., Lara, J.C., and Lory, S., 1990, The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol., 172:389–396.

    PubMed  CAS  Google Scholar 

  219. Venturi, V., 2003, Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol. Microbiol., 49:1–9.

    Article  PubMed  CAS  Google Scholar 

  220. Vignon, G., Kohler, R., Larquet, E., Giroux, S., Prevost, M.C., Roux, P., and Pugsley, A.P., 2003, Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol., 185:3416–3428.

    Article  PubMed  CAS  Google Scholar 

  221. Wall, D., and Kaiser, D., 1998, Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc. Natl. Acad. Sci. USA, 95:3054–3058.

    Article  PubMed  CAS  Google Scholar 

  222. Wall, D., Wu, S.S., and Kaiser, D., 1998, Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J. Bacteriol., 180:759–761.

    PubMed  CAS  Google Scholar 

  223. Watson, A.A., Alm, R.A., and Mattick, J.S., 1996, Identification of a gene, pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa. Gene, 180:49–56.

    Article  PubMed  CAS  Google Scholar 

  224. Watts, T.H., Kay, C.M., and Paranchych, W., 1983, Spectral properties of three quaternary arrangements of Pseudomonas pilin. Biochemistry, 22:3640–3646.

    Article  PubMed  CAS  Google Scholar 

  225. Webre, D.J., Wolanin, P.M., and Stock, J.B., 2003, Bacterial chemotaxis. Curr. Biol., 13:R47–R49.

    Article  PubMed  CAS  Google Scholar 

  226. Weiss, R.L., 1971, The structure and occurrence of pili (fimbriae) on Pseudomonas aeruginosa. J. Gen. Microbiol., 67:135–143.

    PubMed  CAS  Google Scholar 

  227. Whitchurch, C.B., Hobbs, M., Livingston, S.P., Krishnapillai, V., and Mattick, J.S., 1991, Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene, 101:33–44.

    Article  PubMed  CAS  Google Scholar 

  228. Whitchurch, C.B., Alm, R.A., and Mattick, J.S., 1996, The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 93:9839–9843.

    Article  PubMed  CAS  Google Scholar 

  229. Whitchurch, C.B., Beatson, S.A., Comolli, J.C., Jakobsen, T., Sargent, J.L., Bertrand, J.J., West, J., Klausen, M., Waite, L.L., Kang, P.J., Tolker-Nielsen, T., Mattick, J.S., and Engel, J.N., 2005, Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol. Microbiol., 55:1357–1378.

    Article  PubMed  CAS  Google Scholar 

  230. Whitchurch, C.B., Erova, T.E., Emery, J.A., Sargent, J.L., Harris, J.M., Semmler, A.B., Young, M.D., Mattick, J.S., and Wozniak, D.J., 2002, Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J. Bacteriol., 184:4544–4554.

    Article  PubMed  CAS  Google Scholar 

  231. Whitchurch, C.B., Leech, A.J., Young, M.D., Kennedy, D.H., Sargent, J.L., Bertrand, J.J., Semmler, A.B.T., Mellick, A.A., Martin, P.R., Alm, R.A., Hobbs, M., Beatson, S.A., Huang, B., Nguyen, L., Comolli, J.C., Engel, J.N., Darzins, A., and Mattick, J.S., 2004, Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol., 52:873–893.

    Article  PubMed  CAS  Google Scholar 

  232. Whitchurch, C.B., and Mattick, J.S., 1994, Characterisation of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol. Microbiol., 13:1079–1091.

    PubMed  CAS  Google Scholar 

  233. Whitchurch, C.B., Tolker-Nielsen, T., Ragas, P.C., and Mattick, J.S., 2002, Extracellular DNA required for bacterial biofilm formation. Science, 295:1487.

    Article  PubMed  CAS  Google Scholar 

  234. Wolanin, P.M., and Stock, J.B., 2004, Bacterial chemosensing: cooperative molecular logic. Curr. Biol., 14:R486–R487.

    Article  PubMed  CAS  Google Scholar 

  235. Wolfgang, M., van Putten, J.P., Hayes, S.F., Dorward, D., and Koomey, M., 2000, Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J., 19:6408–6418.

    Article  PubMed  CAS  Google Scholar 

  236. Wolfgang, M.C., Lee, V.T., Gilmore, M.E., and Lory, S., 2003, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell, 4:253–263.

    Article  PubMed  CAS  Google Scholar 

  237. Wong, W.Y., Campbell, A.P., McInnes, C., Sykes, B.D., Paranchych, W., Irvin, R.T., and Hodges, R.S., 1995, Structure-function analysis of the adherence-binding domain on the pilin of Pseudomonas aeruginosa strains PAK and KB7. Biochemistry, 34:12963–12972.

    Article  PubMed  CAS  Google Scholar 

  238. Wong, W.Y., Irvin, R.T., Paranchych, W., and Hodges, R.S., 1992, Antigen-antibody interactions: elucidation of the epitope and strain-specificity of a monoclonal antibody directed against the pilin protein adherence binding domain of Pseudomonas aeruginosa strain K. Protein Sci., 1:1308–1318.

    Article  PubMed  CAS  Google Scholar 

  239. Woods, D.E., Bass, J.A., Johanson, W.G., Jr., and Straus, D.C., 1980, Role of adherence in the pathogenesis of Pseudomonas aeruginosa lung infection in cystic fibrosis patients. Infect. Immun., 30:694–699.

    PubMed  CAS  Google Scholar 

  240. Woods, D.E., Straus, D.C., Johanson, W.G., Jr., Berry, V.K., and Bass, J.A., 1980, Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun, 29:1146–1151.

    PubMed  CAS  Google Scholar 

  241. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K.C., Birrer, P., Bellon, G., Berger, J., Weiss, T., Botzenhart, K., Yankaskas, J.R., Randell, S., Boucher, R.C., and Doring, G., 2002, Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest., 109:317–325.

    Article  PubMed  CAS  Google Scholar 

  242. Yeo, H.J., Savvides, S.N., Herr, A.B., Lanka, E., and Waksman, G., 2000, Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell, 6:1461–1472.

    Article  PubMed  CAS  Google Scholar 

  243. Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M., 2001, Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol., 42:63–73.

    Article  PubMed  CAS  Google Scholar 

  244. Yu, H., Mudd, M., Boucher, J.C., Schurr, M.J., and Deretic, V., 1997, Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J. Bacteriol., 179:187–193.

    PubMed  CAS  Google Scholar 

  245. Yu, L., Lee, K.K., Hodges, R.S., Paranchych, W., and Irvin, R.T., 1994, Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins. Infect. Immun., 62:5213–5219.

    PubMed  CAS  Google Scholar 

  246. Yu, L., Lee, K.K., Paranchych, W., Hodges, R.S., and Irvin, R.T., 1996, Use of synthetic peptides to confirm that the Pseudomonas aeruginosa PAK pilus adhesin and the Candida albicans fimbrial adhesin possess a homologous receptor-binding domain. Mol. Microbiol., 19:1107–1116.

    Article  PubMed  CAS  Google Scholar 

  247. Zhao, Z., and Panjwani, N., 1995, Pseudomonas aeruginosa infection of the cornea and asialo GM1. Infect. Immun., 63:353–355.

    PubMed  CAS  Google Scholar 

  248. Zhulin, I.B., Taylor, B.L., and Dixon, R., 1997, PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci., 22:331–333.

    Article  PubMed  CAS  Google Scholar 

  249. Zolfaghar, I., Evans, D.J., and Fleiszig, S.M., 2003, Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect. Immun., 71:5389–5393.

    Article  PubMed  CAS  Google Scholar 

  250. Zoutman, D.E., Hulbert, W.C., Pasloske, B.L., Joffe, A.M., Volpel, K., Trebilcock, M.K., and Paranchych, W., 1991, The role of polar pili in the adherence of Pseudomonas aeruginosa to injured canine tracheal cells: a semiquantitative morphologic study. Scan. Microsc., 5:109–126.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Whitchurch, C.B. (2006). Biogenesis and Function of Type IV Pili in Pseudomonas Species. In: Ramos, JL., Levesque, R.C. (eds) Pseudomonas. Springer, Boston, MA . https://doi.org/10.1007/0-387-28881-3_6

Download citation

Publish with us

Policies and ethics