Skip to main content

Oxysterols: Formation and Biological Function

  • Chapter
Advanced Dairy Chemistry Volume 2 Lipids

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ahn, D.U., Nam, K.C., Du, M., Jo, C. 2001. Effect of irradiation and packaging conditions after cooking on the formation of cholesterol and lipid oxidation products in meats during storage. Meat Sci. 57, 413–418.

    CAS  Google Scholar 

  • Aneja, R.P., Murthi, T.N. 1991. Beneficial effects of ghee. Nature 350, 280.

    Google Scholar 

  • Angulo, A.J., Romera, J.M., Ramirez, M., Gil, A. 1997. Determination of cholesterol oxides in dairy products. Effect of storage conditions. J. Agric. Food Chem. 45, 4318–4323.

    CAS  Google Scholar 

  • Appelqvist, L.-A. 1996. Oxidized sterols. Bulletin 315, International Dairy Federation, Brussels, pp. 52–58.

    Google Scholar 

  • Auge, N., Negre-Salvayre, A., Salayre, R., Levade, T. 2000. Sphingomyelin metabolites in vascular cell signalling and atherogenesis. Prog. Lipid Res. 39, 207–229.

    CAS  Google Scholar 

  • Aupeix, K., Weltin, V., Mejia, J.E., Christ, M., Marchal, J., Freyssinet, J.-M., Bischoff, P. 1995. Oxysterol-induced apoptosis in human monocytic cell lines. Immunobiol. 194, 415–428.

    CAS  Google Scholar 

  • Bascoul, J., Domergue, M., Mourot, J., Dery, G., Crastes de Paulet, A. 1986. Intestinal absorption and fecal excretion of 5,6-α-epoxy-5α-cholesta-3 β-ol by the male wistar rat. Lipids 21, 744–747.

    CAS  Google Scholar 

  • Beluny, M.A. 2002. Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Ann. Rev. Nutr. 22, 505–531.

    Google Scholar 

  • Biasi, F., Leonarduzzi, G., Vizio, B., Zanetti, D., Sevanian, A., Sottero, B., Verde, V., Zingaro, B., Chairpotto, E., Poli, G. 2004. Oxysterol mixtures prevent proapoptotic effects of 7-ketocholesterol in macrophages: implications for proatherogenic gene modulation. FASEP J. 18, 693–705.

    CAS  Google Scholar 

  • Bjorkhem, I. 2002. Do oxysterols control cholesterol homeostasis? J. Clin. Invest. 110, 725–730.

    CAS  Google Scholar 

  • Bjorkhem, I., Diczfalusy, U. 2002. Oxysterols. Friends, foes, or just fellow passengers? Arterioscler. Thromb. Vasc. Biol. 22, 734–742.

    CAS  Google Scholar 

  • Bjorkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R.-J., Duan, C., Lund, E.G. 1994. Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc. Natl. Acad. Sci. USA 91, 8592–8596.

    CAS  Google Scholar 

  • Bortolomeazzi, R., Pizzale, L., Conte, L.S., Lercker, G. 1994. Identification of thermal oxidation products of cholestryl acetate. J. Chromatogr. 683, 75–85.

    CAS  Google Scholar 

  • Brady, L.M., Williams, C.M., Lovegrove, J.A. 2004. Dietary PUFA and the metabolic syndrome in Indian Asians living in the UK. Proc. Nutr. Soc. 63, 115–125.

    CAS  Google Scholar 

  • Brown, A.J., Jessup, W. 1999. Oxysterols and atherosclerosis. Atherosclerosis 142, 1–28.

    CAS  Google Scholar 

  • Brown, A. J., Dean, R.T., Jessup, W. 1996. Free and esterified oxysterol: formation during copper-oxidation of low-density lipoprotein and uptake of macrophage. J. Lipid Res. 37, 320–335.

    CAS  Google Scholar 

  • Brown, A.J., Leong, S.-L., Dean, R.T., Jessup, W. 1997. 7-Hydroxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J. Lipid Res. 38, 1730–1745.

    CAS  Google Scholar 

  • Carpenter, K.L.H, Taylor, S.E., van der Veen, C., Williamson, B.K., Ballantine, J.A., Mitchinson, M.J. 1995. Lipids and oxidized lipids in human atherosclerotic lesions at different stages of development. Biochim. Biophys. Acta 1256, 141–150.

    Google Scholar 

  • Carroll, Y.L., Corridan, B.M., Morrissey, P.A. 2000. Lipoprotein carotenoid profiles and the susceptibility of low density lipoprotein to oxidative modification in healthy elderly volunteers. Eur. J. Clin. Nutr. 54, 500–507.

    CAS  Google Scholar 

  • Chan, S.-H., Gray, J.I., Gomaa, E.A., Harte, B.R., Kelly, P.M., Buckley, D.J. 1993. Cholesterol oxidation in whole milk powders as influenced by processing and packaging. Food Chem. 47, 321–328.

    CAS  Google Scholar 

  • Chang, Y.H., Abdalla, D.S.P., Sevanian, A. 1997. Characterization of cholesterol oxidation products formed by oxidative modification of low density lipoproteins. Free Radic. Biol. Med. 23, 202–214.

    CAS  Google Scholar 

  • Chiang, J.Y.L. 2004. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J. Hepatol. 40, 539–551.

    CAS  Google Scholar 

  • Chien, J.T., Lu, Y.F., Hu, P.C., Chen, B.H. 2003. Cholesterol photooxidation as affected by combination of riboflavin and fatty acid methyl esters. Food Chem. 81, 421–431.

    CAS  Google Scholar 

  • Chien, J.T., Wang, H.C., Chen, B.H. 1998. Kinetic model of the cholesterol oxidation during heating. J. Agric. Food Chem. 46, 2572–2577.

    CAS  Google Scholar 

  • Coppola, S., Ghibelli, L. 2000. GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem. Soc. Trans. 28, 56–61.

    CAS  Google Scholar 

  • Dutta, P.C., Savage, G.P. 2002. Harmonization of cholesterol oxidation product analysis. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Bological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 114–123, AOCS Press, Champaign, IL.

    Google Scholar 

  • Dutta, P.C., Carboni, M.F., Diczfalusy, U., Dionisi, F., Dzeletovic, S., Grandgirard, A., Guardiola, F., Kumpulainen, J., Lebovics, V.K., Pihlava, J.R., Rodriguez-Estrada, M.T., Ulberth, F. 1999. Measurement of cholesterol oxides in foods: results of an interlaboratory comparison study. In: Natural Antioxidants and Anticarcinogens in Nutrition, Health and Diseases (J.T. Kumpulainen, J.T. Salonen, eds.), pp. 309–315, Royal Society of Chemistry, London.

    Google Scholar 

  • Dzeletovic, S., Babiker, A., Lund, E., Diczfalusy, U. 1995. Time course of oxysterol formation during in vitro oxidation of low density lipoprotein. Chem. Phys. Lipids 78, 119–128.

    CAS  Google Scholar 

  • Emanuel, H.A. Hassel, C.A., Addis, P.B., Bergmann, S.D., Zavoral, J.H. 1991. Plasma cholesterol oxidation products in human subjects fed a meal rich in oxysterols. J. Food Sci. 56, 843–847.

    CAS  Google Scholar 

  • Esterbauer, H., Gebicki, J., Puhl, H., Jurgens, G. 1992. The role of lipid per-oxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13, 341–349.

    CAS  Google Scholar 

  • Esterbauer, H., Puhl, H., Waeg, G., Krebs, A., Dieber-Rothender, M. 1993. The role of vitamin E in lipoprotein oxidation. In: Vitamin E in Health and Disease (L. Packer, J. Fuchs, eds.), pp. 649–671, Marcel Dekker, New York.

    Google Scholar 

  • Evangelisti, F., Zunin, P. 2002. Formation and content of cholesterol oxidation products in other foods. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 204–216, AOCS Press, Champaign, IL.

    Google Scholar 

  • Galobart, J., Guardiola, F. 2002. Formation and content of cholesterol oxidation products in egg and egg products. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 124–146, AOCS Press, Champaign, IL.

    Google Scholar 

  • Galvin, K., Morrissey, P.A., Buckley, D.J. 1998a. Effect of dietary α-tocopherol supplementation and gamma-irradiation on α-tocopherol retention and lipid oxidation in cooked minced chicken. Food Chem. 62, 185–190.

    CAS  Google Scholar 

  • Galvin, K., Morrissey, P.A., Buckley, D.J. 1998b. Cholesterol oxides in processed chicken muscle as influenced by dietary β-tocopherol supplementation. Meat Sci. 48, 1–9.

    CAS  Google Scholar 

  • Galvin, K., Lynch, A-M., Kerry, J.P., Morrissey, P.A., Buckley, D.J. 2000. Effect of dietary vitamin E supplementation on cholesterol oxidation in vacuum packaged cooked beef steaks. Meat Sci. 55, 7–11.

    CAS  Google Scholar 

  • Garcia-Cruset, S., Carpenter, K.L.H., Codony, R., Guardiola, F. 2002. Cholesterol oxidation products and atherosclerosis. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 241–277, AOCS Press, Champaign, IL.

    Google Scholar 

  • Gey, K.F., Moser, U.K., Jordan, P., Stahelin, H.B., Eicholzer, M., Lundin, E. 1993. Increased risk of cardiovascular disease at suboptimal plasma concentrations of essential antioxidants: an epidemiological update with special attention to β-carotene and vitamin C. Am. J. Clin. Nutr. 57, 787S–797S.

    CAS  Google Scholar 

  • Gey, K.G., Puska, P., Jordan, P., Moser, U.K. 1991. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am. J. Clin. Nutr. 53, 326S–334S.

    CAS  Google Scholar 

  • Girotti, A.W. 2001. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxid effects, and cytoprotective mechanisms. J. Photochem. Photobiol B: Biology 63, 103–113.

    CAS  Google Scholar 

  • Guardiola, F., Boatella, J., Codony, R. 2002. Determination of cholesterol oxidation products by gas chromatography. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 50–65, AOCS Press, Champaign, IL.

    Google Scholar 

  • Guardiola, F., Codony, R., Addis, P.B., Rafecas, M., Boatella, J. 1996. Biological effects of oxysterols: current status. Food Chem. Toxicol. 34, 193–211.

    CAS  Google Scholar 

  • Gupta, R., Deedwania, P.C., Gupta, A., Rastogi, S., Panwar, R.B., Kothari, K. 2004. Prevalence of metabolic syndrome in an Indian urban population. Int. J. Cardiol. 97, 257–261.

    Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine, 3rd edn, Oxford University Press, Oxford.

    Google Scholar 

  • Hayden, J.M., Brachova, L., Higgins, K., Obermiller, L., Sevanian, A., Khandrika, S., Reaven, P.D. 2002. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J. Lipid Res. 43, 26–35.

    CAS  Google Scholar 

  • Hodis, H.N., Crawford, D.W., Sevanian, A. 1991. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atheroscler. 89, 117–126.

    CAS  Google Scholar 

  • Hodis, H.N., Kramsch, D.M., Avogaro, P., Bittolo-Bon, G., Cazzoloto, G., Hwang, J., Peterson, H., Sevanian, A. 1994. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J. Lipid Res. 35, 669–677.

    CAS  Google Scholar 

  • Hu, P.C., Chen, B.H. 2002. Effects of riboflavin and fatty acid methyl esters on cholesterol oxidation during illumination. J. Agric. Food Chem. 50, 3572–3578.

    CAS  Google Scholar 

  • Jacobson, M.S. 1987. Cholesterol oxides in Indian ghee: possible cause of unexplained risk of atherosclerosis in Indian immigrant populations. Lancet ii,(8560), 656–658.

    Google Scholar 

  • Kauffman, J.M., Westerman, P.W., Carey, M.C. 2000. Fluoro-cholesterols, in contrast to hydroxycholesterols, exhibit interfacial properties similar to cholesterol. J. Lipid Res. 41, 991–1003.

    CAS  Google Scholar 

  • Kerry, J.P., Gilroy, D.A., O’Brien, N.M. 2002. Formation and content of cholesterol oxidation products in meat and meat products. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 162–185, AOCS Press, Champaign, IL.

    Google Scholar 

  • Kromhout, D. 2001. Diet and cardiovascular diseases. J. Nutr. Health Aging 5, 144–149.

    CAS  Google Scholar 

  • Kumar, M.V., Sambaiah, K., Lokesh, B.R. 1999. Effect of dietary ghee — the anhydrous milk fat, on blood and liver lipids in rats. J. Nutr. Biochem. 10, 96–104.

    CAS  Google Scholar 

  • Kumar, N., Singhal, O.P. 1992. Effect of processing conditions on the oxidation of cholesterol in ghee. J. Sci. Food Agric. 58, 267–273.

    CAS  Google Scholar 

  • Kushi, L.H., Folsom, A.R., Prineas, R.J., Mink, P.J., Wu, Y., Bostick, R.M. 1996. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. New Engl. J. Med. 334, 1156–1162.

    CAS  Google Scholar 

  • Lai, S.-M., Gray, J.I., Buckley, D.J., Kelly, P.M. 1995. Influence of free radicals and other factors on formation of cholesterol oxidation products in spray-dried whole egg. J. Agric. Food Chem. 43, 1127–1131.

    CAS  Google Scholar 

  • Lange, Y., Ye, J., Strebel, F. 1995. Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells. J. Lipid Res. 36, 1092–1097.

    CAS  Google Scholar 

  • Lebovics, V.K. 2002. Determination of cholesterol oxidation products by thin-layer chromatography. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 101–113, AOCS Press, Champaign, IL.

    Google Scholar 

  • Lemaire, S., Lizard, G., Monier, S., Miguet, C., Gueldry, S., Volot, Gambert, P., Neel, D. 1998. Different patterns of IL-1 beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7 alpha-, 7 beta-hydroxycholesterol, or 7-ketocholesterol. FEBS Letts. 440, 434–439.

    CAS  Google Scholar 

  • Leonarduzzi, G., Biasi, F., Chiarpotto, E., Poli, G. 2004. Trojan horse-like behaviour of a biologically representative mixture of oxysterols. Mol. Aspects Med. 25, 155–167.

    CAS  Google Scholar 

  • Leonarduzzi, G., Sottero, B., Poli, G. 2002. Oxidized products of cholesterol: dietary and metabolic origin, and proatherosclerotic effects (review). J. Nutr. Biochem. 13, 700–710.

    CAS  Google Scholar 

  • Lercker, G., Rodriguez-Estrada, M.T. 2002. Cholesterol oxidation mechanisms. In: Cholesterol and Phytosterol Oxidation Products: Analysis Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 1–25, AOCS Press, Champaign, IL.

    Google Scholar 

  • Li, N., Ohshima, T., Shozen, K., Ushio, H., Koizumi, C. 1994. Effects of the degree of unsaturation of coexisting triacylglycerols on cholesterol oxidation. J. Am. Oil Chem. Soc. 71, 623–627.

    CAS  Google Scholar 

  • Li, S.X., Ahn, D.U., Cherian, G., Chung, T.Y., Sim, J.S. 1996. Dietary oils and tocopherol supplementation on cholesterol oxide formation in freeze-dried chicken meat during storage. J. Food Lipids 3, 27–42.

    CAS  Google Scholar 

  • Li, W., Dalen, H., Eaton, J.W., Yuan, X.-M. 2001. Apoptotic death of inflammatory cells in human atheroma. Arterioscler. Thromb. Vasc. Biol. 21, 1124–1130.

    CAS  Google Scholar 

  • Linseisen, J., Wolfram, G. 1998. Absorption of cholesterol oxidation products from ordinary foodstuffs in humans. Ann. Nutr. Metab. 42, 221–230

    CAS  Google Scholar 

  • Lizard, G., Miguet, C., Bessede, G., Monier, S., Gueldry, S., Neel, D., Gambert, P. 2000. Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occurring during 7-ketocholesterol-induced apoptosis. Free Radic. Biol. Med. 28, 743–753.

    CAS  Google Scholar 

  • Lizard, G., Monier, S., Cordelet, C., Gesquiere, L., Deckert, V., Gueldry, S., Lagrost, L., Gambert, P. 1999. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7β-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler. Thromb. Vasc. Biol. 19, 1190–1200.

    CAS  Google Scholar 

  • Lusis, A.J. 2000. Atherosclerosis. Nature 407, 233–241.

    CAS  Google Scholar 

  • Lyons, M.A., Brown, A.J. 1999. 7-Ketocholesterol. Int. J. Biochem. Cell Biol. 31, 369–375.

    CAS  Google Scholar 

  • Lyons, M.A., Brown, A.J. 2000. Oxysterols in atherogenesis. In: Atherosclerosis, Gene Expression, Cell Interactions, and Oxidation (R.T. Dean, D. Kelly, eds.), pp. 348–370, Oxford University Press, Oxford.

    Google Scholar 

  • Malavasi, B., Rasetti, M.F., Roma, P., Fogliatto, R., Allevi, P., Catapano, A.L., Galli, G. 1992. Evidence of the presence of 7-hydroperoxycholest-5-en-3β-ol in oxidized human LDL. Chem. Phys. Lipids 62, 209–214.

    CAS  Google Scholar 

  • Mattsson-Hulten, L., Lindmark, H., Diczfalusy, U., Björkhem, I., Ottosson, M., Liu, Y., Bondgers, G., Wilklund, O. 1996. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J. Clin. Invest. 97, 461–468.

    Google Scholar 

  • McCluskey, S., Connolly, J.F., Devery, R., O’Brien, B., Kelly, J., Harrington, D., Stanton, C. 1997. Lipid and cholesterol oxidation in whole milk powder during processing and storage. J. Food Sci. 62, 331–337.

    CAS  Google Scholar 

  • McNamara, D.J. 2000. Dietary cholesterol and atherosclerosis. Biochim. Biophys. Acta 1529, 310–320.

    CAS  Google Scholar 

  • Meaney, S., Bodin, K., Diczfalusy, U., Bjorkhem, I. 2002. On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J. Lipid Res. 43, 2130–2135.

    CAS  Google Scholar 

  • Miguet, C., Monier, S., Bettaieb, A., Athias, A., Bessede, P., Laubriet, A., Lemaire, S., Neal, D., Gambert, P., Lizard, G. 2001. Ceramide generation occurring during 7β-hydroxycholesterol and 7-ketocholesterol-induced apoptosis is caspase independent and is not required to trigger cell death. Cell Death Differ. 8, 83–99.

    CAS  Google Scholar 

  • Monahan, F.J., Gray, J.I., Booren, A.M., Miller, E.R., Buckley, D.J., Morrissey, P.A., Gomaa, E.A. 1992. Influence of dietary treatment on lipid and cholesterol oxidation in pork. J. Agric. Food Chem. 40, 1310–1315.

    CAS  Google Scholar 

  • Morgan J.N., Armstrong, D.J. 1992. Quantification of cholesterol oxidation products in egg yolk powder spray-dried with direct heating. J. Food Sci. 57, 43–45.

    CAS  Google Scholar 

  • Morrissey, P.A., Buckley, D.J., Galvin, K. 2000. Vitamin E and the oxidative stability of pork and poultry. In: Antioxidants in Muscle Foods. Nutritional Strategies to Improve Quality (E.A. Decker, C. Faustman, C.J. Lopez-Bote, eds.), pp. 263–287, John Wiley, New York.

    Google Scholar 

  • Morrissey, P.A., Sheehy, P.J.A., Galvin, K., Kerry, J.P., Buckley, D.J. 1998. Lipid stability in meat and meat products. Meat Sci. 49(Suppl 1), 573–586.

    Google Scholar 

  • Mougios, V., Matsakas, A., Petridou, A., Ring, S., Sagredos, A., Melissopoulou, A., Tsigilis, N., Nikolaidis, M. 2001. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J. Nutr. Biochem. 12, 585–594.

    CAS  Google Scholar 

  • Nielsen, J.H., Olsen, C.E., Skibsted, L.H. 1996a. Cholesterol oxidation in a heterogeneous system initiated by water-soluble radicals. Food Chem. 56, 33–37.

    CAS  Google Scholar 

  • Nielsen, J.H., Olsen, C.E., Jensen, C., Skibsted, L.H. 1996b. Cholesterol oxidation in butter and dairy spreads during storage. J. Dairy Res. 63, 159–167.

    CAS  Google Scholar 

  • Nishio, E., Arimura, S., Watanabe, Y. 1996. Oxidized LDL induces apoptosis in cultured smooth muscle cells: a possible role for 7-ketocholesterol. Biochem. Biophys. Res. Commun. 223, 413–418.

    CAS  Google Scholar 

  • O’Callaghan, Y.C., Woods, J.A., O’Brien, N.M. 2002. Characteristics of 7β-hydroxycholesterolinduced cell death in a human monocytic blood cell line, U937, and a human hepatoma cell line, HepG2. Toxicol. in Vitro 16, 245–251.

    CAS  Google Scholar 

  • Ohshima, T. 2002. Formation and content of cholesterol oxidation products in seafood and seafood products. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 186–203, AOCS Press, Champaign, IL.

    Google Scholar 

  • Ohshima, T., Li, N., Koizumi, C. 1993. Oxidative decomposition of cholesterol in fish products. J. Am. Oil. Chem. Soc. 70, 995–600.

    Google Scholar 

  • Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., Slotte, J.P. 2002. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97.

    CAS  Google Scholar 

  • Osada, K., Kodama, T., Yamada, K., Sugano, M. 1993a. Oxidation of cholesterol by heating. J. Agric. Food Chem. 41, 1198–1202.

    CAS  Google Scholar 

  • Osada, K., Kodama, T., Cui, L., Yamada, K., Sugano, M. 1993b. Levels and formation of oxidized cholesterols in processed marine oils. J. Agric. Food Chem. 41, 1893–1898.

    CAS  Google Scholar 

  • Paniangvait, P., King, A.J., Jones, A.D., German, B.G. 1995. Cholesterol oxides in foods of animal origin. J. Food Sci. 60, 1159–1174.

    CAS  Google Scholar 

  • Panini, S.R., Sinensky, M.S. 2001. Mechanisms of oxysterol-induced apoptosis. Curr. Opin. Lipidol. 12, 529–533.

    CAS  Google Scholar 

  • Parthasarathy, S., Santanam, N., Auge, N. 1998. Oxidized low-density lipoprotein, a two-faced Janus in coronary artery disease? Biochem. Pharmacol. 56, 279–284.

    CAS  Google Scholar 

  • Patel, R.P., Diazfalusy, U., Dzeletovic, S., Wilson, M.T., Darley-Usmar, V.M. 1996. Formation of oxysterols during oxidation of low-density lipoprotein by peroxynitrite, myoglobin and copper. J. Lipid Res. 37, 2361–2371.

    CAS  Google Scholar 

  • Porkkala-Sarataho, E., Salonen, J.T., Nyyssonen, K., Kaikkonen, J., Salonen, R., Ristonmaa, U., Diczfalusy, U., Brigelius-Flohe, R., Loft, S., Poulsen, H.E. 2000. Long-term effects of vitamin E, vitamin C, and combined supplementation on urinary 7-hydro-8-oxo-2′-deoxyguanosine, serum cholesterol oxidation products and oxidation resistance of lipids in non-depleted men. Arterioscler. Thromb. Vasc. Biol. 20, 2087–2093.

    CAS  Google Scholar 

  • Prasad, C.R., Subramanian, R. 1992. Qualitative and comparative studies of cholesterol oxides in commercial and home-made Indian ghees. Food Chem. 45, 71–73.

    CAS  Google Scholar 

  • Pryor, W.A. 1994. Free radicals and lipid peroxidation: what they are and how they got that way. In: Natural Antioxidants in Human Health and Disease (B. Frei, ed.), pp. 1–24, Academic Press, London.

    Google Scholar 

  • Pryor, W.A. 2000. Vitamin E and heart disease: Basic science to clinical intervention trials. Free Radic. Biol. Med. 28, 141–164.

    CAS  Google Scholar 

  • Rodriguez-Estrada, M.T., Caboni, M.F. 2002. Determination of cholesterol oxidation products by high-performance liquid chromatography. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 66–100, AOCS Press, Champaign, IL.

    Google Scholar 

  • Rosenblat, M., Aviram, M. 2002. Oxysterol-induced activation of macrophage NADPH-oxidase enhances cell-mediated oxidation of LDL in the atherosclerotic apolipoprotein E deficient mouse: inhibitory role for vitamin E. Atheroscler. 160, 69–80.

    CAS  Google Scholar 

  • Rose-Sallin, C., Huggett, A.C., Bosset, J.O., Tabacchi, R., Fay, L.B. 1995. Quantitation of cholesterol oxidation products in milk powder using [2H7] cholesterol to monitor cholesterol autoxidation. J. Agric. Food Chem. 43, 935–941.

    CAS  Google Scholar 

  • Ross, R. 1993. The pathogenesis of atherosclerosis, a perspective for the 1990s. Nature 362, 801–809.

    CAS  Google Scholar 

  • Ross, R. 1999. Atherosclerosis — an inflammatory disease. New Engl. J. Med. 340, 115–126.

    CAS  Google Scholar 

  • Russell, D.W. 2000. Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta 1529, 126–135.

    CAS  Google Scholar 

  • Russell, D.W. 2003. The enzymes, regulation, and genetics of bile acid synthesis. Ann. Rev. Biochem. 72, 137–174.

    CAS  Google Scholar 

  • Salvayre, R., Auge, N., Benoist, H., Negre-Salvayre, A. 2002. Oxidized low-density lipoproteininduced apoptosis. Biochim. Biophys. Acta. 1585, 213–221.

    CAS  Google Scholar 

  • Schroepfer, Jr., G.J. 2000. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80, 361–554.

    CAS  Google Scholar 

  • Sevanian, A., Hodis, H.N., Hwang, J., McLeod, L.L., Peterson, H. 1995. Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. J. Lipid Res. 36, 1971–1986.

    CAS  Google Scholar 

  • Sevilla, C.L., Becker, D., Sevilla, M.D. 1986. An electron spin resonance investigation of radical intermediates in cholesterol and related products: relation to solid-state autoxidation. J. Phys. Chem. 90, 2963–2968.

    CAS  Google Scholar 

  • Shan, H, Pang, J., Li, S., Chiang, T.B., Wilson, W.K., Schroepfer, Jr., G.J. 2003. Chromatographic behaviour of oxygenated derivatives of cholesterol. Steroids 68, 221–233.

    CAS  Google Scholar 

  • Smith, L.L. 1987. Cholesterol autoxidation: 1981–1986. Chem. Phys. Lipids 44, 87–125.

    CAS  Google Scholar 

  • Smith, L.L. 1992. The oxidation of cholesterol. In: Biological Effects of Cholesterol Oxides (S-K. Peng, R.J. Morin, eds.), pp. 7–31, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Smith, L.L. 1996. Review of progress in sterol oxidations: 1987–1995. Lipids 31, 453–487.

    CAS  Google Scholar 

  • Smondyrev, A.M., Berkowit, M.L. 2001. Effects of oxygenated sterol on phospholipids bilayer properties: a molecular dynamics simulation. Chem. Phys. Lipids 112, 31–39.

    CAS  Google Scholar 

  • Sserunjogi, M.L., Abrahamsen, R.K., Narvhus, J. 1998. A review paper: current knowledge of ghee and related products. Int. Dairy J. 8, 677–688.

    CAS  Google Scholar 

  • Stanton, C., Devery, R. 2002. Formation and content of cholesterol oxidation products in milk and dairy products. In: Cholsterol and Phytosterol Oxidation Products: Analysis, Occurrence and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 147–161, AOCS Press, Champaign, IL.

    Google Scholar 

  • Steinberg, D. 2002. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat. Med. 8, 1211–1217.

    CAS  Google Scholar 

  • Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., Witztun, J.L. 1989. Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. New Engl. J. Med. 320, 915–924.

    CAS  Google Scholar 

  • Tall, A.R., Costet, P., Wang, N. 2002. Regulation and mechanisms of macrophage cholesterol efflux. J. Clin Invest. 110, 899–904.

    CAS  Google Scholar 

  • Theunissen, J.J., Jackson, R.L., Kempen, H.J., Demel, R.A. 1986. Membrane properties of oxysterols. Interfacial orientation, influence on membrane permeability and redistribution between membranes. Biochim. Biophys. Acta 860, 66–74.

    CAS  Google Scholar 

  • Ubhayasekera, S.J.K.A., Verleyen, T., Dutta, P.C. 2004. Evaluation of GC and GC-MS methods for the analysis of cholesterol oxidation products. Food Chem. 84, 149–157.

    CAS  Google Scholar 

  • Ulberth, F., Buchgraber, M. 2002. Extraction and purification of cholesterol oxidation products. In: Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects (F. Guardiola, P.C. Dutta, R. Codony, G.P. Savage, eds.), pp. 26–49, AOCS Press, Champaign, IL. 387–392.

    Google Scholar 

  • Van den Berg, J.J.M., Winterbourn, C.C., Kuypers, F.A. 1993. Hypochlorus acid-mediated modification of cholesterol and phospholipids: analysis of reaction products by gas chromatography-mass spectrometry. J. Lipid Res. 34, 2005–2012.

    Google Scholar 

  • Van Der Vliet, A., Smith, D., O’Neill, C.A., Kaur, H., Darley-Usmar, V., Cross, C.E., Halliwell, B. 1994. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion Biochem. J. 303, 295–301.

    Google Scholar 

  • Vine, D.F., Croft, K.D., Beilin, L.J., Mamo, J.C.L. 1997. Absorption of dietary cholesterol oxidation products and incorporation into rat lymph chylomicrons. Lipids 32, 887–893.

    CAS  Google Scholar 

  • Vine, D.F., Mamo, J.C.L., Beilin, L.J., Mori, T.A., Croft, K.D. 1998. Dietary oxysterols are incorporated in plasma triglyceride-rich lipoproteins, increase their susceptibility to oxidation and increase aortic cholesterol concentration in rabbits. J. Lipid Res. 39, 1995–2004.

    CAS  Google Scholar 

  • Whincup, P. H., Gilg. J. A., Papacosta, O., Seymour, C., Miller, G. J., Alberti, K.G., Cook, D.G. 2002. Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asians and white children. Br. Med. J. 324, 635–638.

    Google Scholar 

  • Wolf, G. 1999. The role of oxysterols in cholesterol homeostasis. Nutr. Rev. 57, 196–198

    CAS  Google Scholar 

  • Zarev, S., Therond, P., Bonnefont-Rousselot, D. Beaudeux, J.-L., Gardes-Albert, M., Legrand, A. 1999. Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by \( \bullet OH/O_2^{\bar \bullet } \) free radicals or by copper. FEBS Letts. 451, 103–108.

    CAS  Google Scholar 

  • Zhou, O., Kummerow, F.A. 1994. Alteration in Ca2+ uptake and lipid content in cultured human arterial smooth muscle cells treated with 26-hydroxycholesterol. Artery 21, 182–192.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Morrissey, P.A., Kiely, M. (2006). Oxysterols: Formation and Biological Function. In: Fox, P.F., McSweeney, P.L.H. (eds) Advanced Dairy Chemistry Volume 2 Lipids. Springer, Boston, MA. https://doi.org/10.1007/0-387-28813-9_18

Download citation

Publish with us

Policies and ethics