Skip to main content

Epithelial Cell Plasticity by Dynamic Transcriptional Regulation of E-Cadherin

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Epithelial cell plasticity is associated with coordinated changes in cell adhesion and migratory behavior. The cell-cell adhesion protein E-cadherin regulates the functional integrity of epithelia by mediating specific intercellular adhesion. E-cadherin is a well-established invasion/tumor suppressor. Dynamic transcriptional regulation is a major mechanism of controlling E-cadherin expression during embryogenesis and malignant progression of various epithelial tumors. A variety of transcription regulators implicated in both embryonic development and tumorigenesis have been described to regulate E-cadherin expression in a reversible way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berx G, Staes K, van Hengel J et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995;26:281–289.

    PubMed  CAS  Google Scholar 

  2. Takeichi M, Matsunami H, Inoue T et al. Roles for cadherins in patterning of the developing brain. Dev Neurosci 1997;19(1):86–87.

    PubMed  CAS  Google Scholar 

  3. Butz S, Larue L. Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun 1995;3(4):337.

    PubMed  CAS  Google Scholar 

  4. Hatta K, Takeichi M. Expression of N-Cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 1986;320:447–449.

    PubMed  CAS  Google Scholar 

  5. Dogan A, Wang ZD, Spencer J. E-cadherin expression in intestinal epithelium. J Clin Pathol 1995;48(2):143–146.

    PubMed  CAS  Google Scholar 

  6. Kuure S, Vuolteenaho R, Vainio S. Kidney morphogenesis: Cellular and molecular regulation. Mech Develop 2000;92(1):31–45.

    CAS  Google Scholar 

  7. Strumane K, van Roy F, Berx G. The role of E-cadherin in epithelial differentiation and cancer progression. In: Pandalai SG, ed. Recent Research Development in Cellular Biochemistry. Kerala, India: Transworld Research Network; 2003;in press.

    Google Scholar 

  8. Sorkin BC, Jones FS, Cunningham BA et al. Identification of the promoter and a transcriptional enhancer of the gene encoding L-CAM, a calcium-dependent cell adhesion molecule. Proc Natl Acad Sci USA. 1993;90(23):11356–11360.

    PubMed  CAS  Google Scholar 

  9. Behrens J, Löwrick O, Klein-Hitpass L et al. The E-cadherin promoter: functional analysis of a G. C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci USA 1991;88(24):11495–11499.

    PubMed  CAS  Google Scholar 

  10. Giroldi LA, Bringuier PP, de Weijert M et al. Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun 1997;241:453–458.

    PubMed  CAS  Google Scholar 

  11. Comijn J, Berx G, Vermassen P et al. The two-handed E-box-binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001;7:1267–1278.

    PubMed  CAS  Google Scholar 

  12. Hennig G, Behrens J, Truss M et al. Progression of carcinoma cells is associated with alterations in chromatin structure and factor binding at the E-cadherin promoter in vivo. Oncogene 1995;11(3):475–484.

    PubMed  CAS  Google Scholar 

  13. Hennig G, Lowrick O, Birchmeier W et al. Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 1996;271(1):595–602.

    PubMed  CAS  Google Scholar 

  14. Batlle E, Sancho E, Franci C et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2(2):84–89.

    PubMed  CAS  Google Scholar 

  15. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002;62(6):1613–1618.

    PubMed  CAS  Google Scholar 

  16. Cano A, Perez-Moreno MA, Rodrigo I et al. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2(2):76–83.

    PubMed  CAS  Google Scholar 

  17. Begemann M, Tan S S, Cunningham BA et al. Expression of chicken liver cell adhesion molecule fusion genes in transgenic mice. Proc Natl Acad Sci USA 1990;87:9042–9046.

    PubMed  CAS  Google Scholar 

  18. Goomer RS, Hoist BD, Wood IC et al. Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1. Proc Natl Acad Sci USA 1994;91(17):7985–7989.

    PubMed  CAS  Google Scholar 

  19. Batsche E, Muchardt C, Behrens J et al. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998;18(7):1–12.

    Google Scholar 

  20. Martel C, Harper F, Cereghini S et al. Inactivation of retinoblastoma family proteins by SV40 T antigen results in creation of a hepatocyte growth factor/scatter factor autocrine loop associated with an epithelial-fibroblastoid conversion and invasiveness. Cell Growth Differ 1997;8(2):165–178.

    PubMed  CAS  Google Scholar 

  21. Ji XD, Woodard AS, Rimm DL et al. Transcriptional defects underlie loss of E-cadherin expression in breast cancer. Cell Growth & Differentiation 1997;8(7):773–778.

    CAS  Google Scholar 

  22. Hosono S, Gross I, English MA et al. E-cadherin is a WT1 target gene. J Biol Chem 2000;275(15):10943–10953.

    PubMed  CAS  Google Scholar 

  23. Faraldo MLM, Rodrigo I, Behrens J et al. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinogen 1997;20(1):33–47.

    CAS  Google Scholar 

  24. Spath GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 1998;140(4):935–946.

    PubMed  CAS  Google Scholar 

  25. Spagnoli FM, Cicchini C, Tripodi M et al. Inhibition of MMH (Met murine hepatocyte) cell differentiation by TGF(beta) is abrogated by pretreatment with the heritable differentiation effector FGF1. J Cell Sci 2000;113 (Pt 20):3639–3647.

    PubMed  CAS  Google Scholar 

  26. Torban E, Goodyer PR. Effects of PAX2 expression in a human fetal kidney (HEK293) cell line. Biochim Biophys Acta-Mol Cell Res 1998;1401(1):53–62.

    CAS  Google Scholar 

  27. Barasch J, Yang J, Ware CB et al. Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 1999;99(4):377–386.

    PubMed  CAS  Google Scholar 

  28. Reichmann E, Schwarz H, Deiner EM et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 1992;71:1103–1116.

    PubMed  CAS  Google Scholar 

  29. Perez-Moreno MA, Locascio A, Rodrigo I et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 2001;276(29):27424–27431.

    PubMed  CAS  Google Scholar 

  30. Leptin M. Morphogenesis-control of epithelial cell shape changes. Curr Biol 1994;4(8):709–712.

    PubMed  CAS  Google Scholar 

  31. Nieto MA. The snail superfamily of zinc finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–166.

    PubMed  CAS  Google Scholar 

  32. Grimes HL, Chan TO, Zweidler-McKay PA et al. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 1996;16(11):6263–6272.

    PubMed  CAS  Google Scholar 

  33. Nakayama H, Scott IC, Cross JC. The transition to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc finger transcription factor. Dev Biol 1998;199(1):150–163.

    PubMed  CAS  Google Scholar 

  34. Locascio A, Vega S, De Frutos CA et al. Biological potential of a human SNAIL retrogene. J Biol Chem 2002;31:31.

    Google Scholar 

  35. Ros MA, Sefton M, Nieto MA. Slug, a zinc finger gene previously implicated in the early patterning of the mesoderm and the neural crest, is also involved in chick limb development. Development 1997;124(9):1821–1829.

    PubMed  CAS  Google Scholar 

  36. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997;137(6):1403–1419.

    PubMed  CAS  Google Scholar 

  37. Bolos V, Peinado H, Perez-Moreno MA et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J Cell Sci 2003;H6 (Pt 3):499–511.

    Google Scholar 

  38. Verschueren K, Remacle JE, Collart C et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 1999;274(29):20489–20498.

    PubMed  CAS  Google Scholar 

  39. Remacle JE, Kraft H, Lerchner W et al. New mode of DNA binding of multi-zinc finger transcription factors: 8EF1 family members bind with two hands to two target sites. EMBO J 1999;18(18):5073–5084.

    PubMed  CAS  Google Scholar 

  40. Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19(33):3823–3828.

    PubMed  CAS  Google Scholar 

  41. Frisch SM. E1a induces the expression of epithelial characteristics. J Cell Biol 1994; 127(4):1085–1096.

    PubMed  CAS  Google Scholar 

  42. Postigo AA, Dean DC. ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci USA 1999; 96(12):6683–6688.

    PubMed  CAS  Google Scholar 

  43. Sefton M, Sanchez S, Nieto MA. Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo. Development 1998; 125:3111–3121.

    PubMed  CAS  Google Scholar 

  44. Van de Putte T, Maruhashi M, Francis A et al. Mice lacking Zfhx1b, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet 2003; 72(2):465–470.

    PubMed  Google Scholar 

  45. Carver EA, Jiang R, Lan Y et al. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001; 21(23):8184–8188.

    PubMed  CAS  Google Scholar 

  46. Guaita S, Puig I, Franci C et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 2002; 277(42):39209–39216.

    PubMed  CAS  Google Scholar 

  47. Zavadil J, Bitzer M, Liang D et al. Genetic programs of epithelial cell plasticity directed by trans forming growth factor-beta. Proc Natl Acad Sci USA 2001; 98(12):6686–6691.

    PubMed  CAS  Google Scholar 

  48. Miettinen PJ, Ebner R, Lopez AR et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: Involvement of type I receptors. J Cell Biol 1994; 127(6):2021–2036.

    PubMed  CAS  Google Scholar 

  49. Piek E, Moustakas A, Heldin CH et al. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112:4557–4568.

    PubMed  CAS  Google Scholar 

  50. Wu CY, Keightley SY, Leung-Hagesteijn C et al. Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 1998; 273(1):528–536.

    PubMed  CAS  Google Scholar 

  51. Novak A, Hsu SC, Leung-Hagensteijn C et al. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci USA 1998; 95(8):4374–4379.

    PubMed  CAS  Google Scholar 

  52. Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: A new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 2001; 155(4):505–510.

    PubMed  CAS  Google Scholar 

  53. Tan C, Costello P, Sanghera J et al. Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/-human colon carcinoma cells. Oncogene. 2001; 20(1):133–140.

    PubMed  CAS  Google Scholar 

  54. Janji B, Melchior C, Vallar L et al. Cloning of an isoform of integrin-linked kinase (ILK) that is upregulated in HT-144 melanoma cells following TGF-beta1 stimulation. Oncogene 2000; 19(27):3069–3077.

    PubMed  CAS  Google Scholar 

  55. Louro ID, Bailey EC, Li XN et al. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 2002; 62(20):5867–5873.

    PubMed  CAS  Google Scholar 

  56. Pizarro A, Benito N, Navarro P et al. E-cadherin expression in basal cell carcinoma. Br J Cancer 1994; 69(1):157–162.

    PubMed  CAS  Google Scholar 

  57. Kooy AJW, Tank B, deJong AAW et al. Expression of E-cadherin, alpha-& Β-catenin, and CD44V(6) and the subcellular localization of E-cadherin and CD44V(6) in normal epidermis and basal cell carcinoma. Hum Pathol 1999; 30(11):1328–1335.

    PubMed  CAS  Google Scholar 

  58. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood. 2002; 100(4):1274–1286.

    PubMed  CAS  Google Scholar 

  59. Matsuda R, Takahashi T, Nakamura S et al. Expression of the c-kit protein in human solid tumors and in corresponding fetal and adult normal tissues. Am J Pathol 1993; 142(1):339–346.

    PubMed  CAS  Google Scholar 

  60. Inoue M, Kyo S, Fujita M et al. Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res 1994; 54(11):3049–3053.

    PubMed  CAS  Google Scholar 

  61. D’Souza B, Taylor-Papadimitriou J. Overexpression of erb-B2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene. Proc Natl Acad Sci USA 1994; 91(15):7202–7206.

    PubMed  CAS  Google Scholar 

  62. Bukholm IK, Nesland JM, Karesen R et al. Expression of E-cadherin and its relation to the p53 protein status in human breast carcinomas. Virchows Arch-Int J Pathol 1997; 431(5):317–321.

    CAS  Google Scholar 

  63. Eberhart CE, Coffey RJ, Radhika A et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastrpenterol 1994; 107(4):1183–1188.

    CAS  Google Scholar 

  64. Half E, Tang XM, Gwyn K et al. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res 2002; 62(6):1676–1681.

    PubMed  CAS  Google Scholar 

  65. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83(3):493–501.

    PubMed  CAS  Google Scholar 

  66. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells in creases metastatic potential. Proc Natl Acad Sci USA 1997; 94:3336–3340.

    PubMed  CAS  Google Scholar 

  67. Perry I, Tselepis C, Hoyland J et al. Reduced cadherin/catenin complex expression in celiac disease can be reproduced in vitro by cytokine stimulation. Lab Invest 1999; 79(12):1489–1499.

    PubMed  CAS  Google Scholar 

  68. Fujimoto J, Ichigo S, Hori M et al. Progestins and danazol effect on cell-to-cell adhesion, and E-cadherin and alpha-and beta-catenin mRNA expressions. J Steroid Biochem Mol Biol 1996; 57(5–6):275–282.

    PubMed  CAS  Google Scholar 

  69. Behrens J, Mareel MM, van Roy FM et al. Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 1989; 108:2435–2447.

    PubMed  CAS  Google Scholar 

  70. Frixen UH, Behrens J, Sachs M et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 1991; 113(1):173–185.

    PubMed  CAS  Google Scholar 

  71. Vleminckx K, Vakaet Jr L, Mareel M et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991; 66:107–119.

    PubMed  CAS  Google Scholar 

  72. Meiners S, Brinkmann V, Naundorf H et al. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 1998; 16:9–20.

    PubMed  CAS  Google Scholar 

  73. Perl AK, Wilgenbus P, Dahl U et al. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392(6672):190–193.

    PubMed  CAS  Google Scholar 

  74. Becker KF, Atkinson MJ, Reich U et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 1994; 54(14):3845–3852.

    PubMed  CAS  Google Scholar 

  75. Berx G, Cleton-Jansen A M, Nollet F et al. E-cadherin is a tumor/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 1995; 14:6107–6115.

    PubMed  CAS  Google Scholar 

  76. Berx G, Becker K-F, Höfler H et al. Mutation Update: Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 1998; 12(4):226–237.

    PubMed  CAS  Google Scholar 

  77. Sommers CL, Thompson EW, Torri JA et al. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: Relationship to morphology and invasive capacities. Cell Growth & Differentiation 1991; 2(8):365–372.

    CAS  Google Scholar 

  78. Brabant G, Hoangvu C, Cetin Y et al. E-cadherin-a differentiation marker in thyroid malignancies. Cancer Res 1993; 53(20):4987–4993.

    PubMed  CAS  Google Scholar 

  79. Dorudi S, Hanby AM, Poulsom R et al. Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome. Br J Cancer 1995; 71(3):614–616.

    PubMed  CAS  Google Scholar 

  80. Graff JR, Herman JG, Lapidus RG et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 1995; 55(22):5195–5199.

    PubMed  CAS  Google Scholar 

  81. Yoshiura K, Kanai Y, Ochiai A et al. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 1995; 92(16):7416–7419.

    PubMed  CAS  Google Scholar 

  82. Munro SB, Turner IM, Farookhi R et al. E-cadherin and OB-cadherin mRNA levels in normal human colon and colon carcinoma. Exp Mol Pathol 1995; 62(2):118–122.

    PubMed  CAS  Google Scholar 

  83. Guriec N, Marcellin L, Gairard B et al. E-cadherin mRNA expression in breast carcinomas correlates with overall and disease-free survival. Invasion & Metastasis 1996; 16(1):19–26.

    CAS  Google Scholar 

  84. Wang JZ, Krill D, Torbenson M et al. Expression of cadherins and catenins in paired tumor and non neoplastic primary prostate cultures and corresponding prostatectomy specimens. Urol Res 2000; 28(5):308–315.

    PubMed  CAS  Google Scholar 

  85. Cheng CW, Wu PE, Yu JC et al. Mechanisms of inactivation of E-cadherin in breast carcinoma: Modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 2001; 20(29):3814–3823.

    PubMed  CAS  Google Scholar 

  86. Jiao W, Miyazaki K, Kitajima Y. Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 2002; 86(1):98–101.

    PubMed  CAS  Google Scholar 

  87. Blanco MJ, Moreno-Bueno G, Sarrio D et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21(20):3241–3246.

    PubMed  CAS  Google Scholar 

  88. Rosivatz E, Becker I, Specht K et al. Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 2002; 161(5):1881–1891.

    PubMed  CAS  Google Scholar 

  89. Schönborn I, Zschiesche W, Behrens J et al. Expression of E-cadherin/catenin complexes in breast cancer: Orrelation with favourable prognostic factors and survival. Int J Oncol 1997; 11(6):1327–1334.

    Google Scholar 

  90. Kleer CG, vanGolen KL, Braun T et al. Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathol 2001; 14(5):458–464.

    CAS  Google Scholar 

  91. Ashida K, Terada T, Kitamura Y et al. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (Standard and variant isoforms) in human cholangiocarcinoma: An immunohistochemical study. Hepatology 1998; 27(4):974–982.

    PubMed  CAS  Google Scholar 

  92. Herman JG, Jen J, Merlo A et al. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15(INK4B1). Cancer Res 1996; 56(4):722–727.

    PubMed  CAS  Google Scholar 

  93. Kanai Y, Ushijima S, Hui AM et al. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer 1997; 71(3):355–359.

    PubMed  CAS  Google Scholar 

  94. Koizume S, Tachibana K, Sekiya T et al. Heterogeneity in the modification and involvement of chromatin components of the CpG island of the silenced human CDH1 gene in cancer cells. Nucleic Acids Res 2002; 30(21):4770–4780.

    PubMed  CAS  Google Scholar 

  95. Nass SJ, Herman JG, Gabrielson E et al. Aberrant methylation of the estrogen receptor and E-cadherin 5 ′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 2000; 60(16):4346–4348.

    PubMed  CAS  Google Scholar 

  96. Droufakou S, Deshmane V, Roylance R et al. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 2001; 92(3):404–408.

    PubMed  CAS  Google Scholar 

  97. Leung WK, Yu J, Ng EKW et al. Concurrent hypermethylation of multiple tumor-related genes in gastric carcinoma and adjacent normal tissues. Cancer 2001; 91(12):2294–2301.

    PubMed  CAS  Google Scholar 

  98. Mingchao, Devereux TR, Stockton P et al. Loss of E-cadherin expression in gastric intestinal meta plasia and later stage p53 altered expression in gastric carcinogenesis. Exp Toxicol Pathol 2001; 53(4):237–246.

    PubMed  CAS  Google Scholar 

  99. Tamura G, Yin J, Wang S et al. E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute 2000; 92(7):569–573.

    PubMed  CAS  Google Scholar 

  100. Tamura G, Sato K, Akiyama S et al. Molecular characterization of undifferentiated-type gastric carcinoma. Lab Invest 2001; 81(4):593–598.

    PubMed  CAS  Google Scholar 

  101. Nakayama S, Sasaki A, Mese H et al. The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. Int J Cancer 2001; 93(5):667–673.

    PubMed  CAS  Google Scholar 

  102. Saito Y, Takazawa H, Uzawa K et al. Reduced expression of E-cadherin in oral squamous cell carcinoma: Relationship with DNA methylation of 5′ CpG island. Int J Oncol 1998; 12(2):293–298.

    PubMed  CAS  Google Scholar 

  103. Bornman DM, Mathew S, Alsruhe J et al. Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial epithelium from elderly individuals. Am J Pathol 2001; 159(3):831–835.

    PubMed  CAS  Google Scholar 

  104. Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 1999; 59:3730–3740.

    PubMed  CAS  Google Scholar 

  105. Melki JR, Vincent PC, Brown RD et al. Hypermethylation of E-cadherin in leukemia. Blood 2000; 95(10):3208–3213.

    PubMed  CAS  Google Scholar 

  106. Graff JR, Gabrielson E, Fujii H et al. Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 2000; 275(4):2727–2732.

    PubMed  CAS  Google Scholar 

  107. Grady WM, Willis J, Guilford PJ et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 2000; 26(1):16–17.

    PubMed  CAS  Google Scholar 

  108. Hajra KM, Ji XD, Fearon ER. Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 1999; 18(51):7274–7279.

    PubMed  CAS  Google Scholar 

  109. Somasiri A, Howarth A, Goswami D et al. Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J Cell Sci 2001; 114 (Pt 6):1125–1136.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Berx, G., Van Roy, F. (2005). Epithelial Cell Plasticity by Dynamic Transcriptional Regulation of E-Cadherin. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_11

Download citation

Publish with us

Policies and ethics