Skip to main content

Tandem CCCH Zinc Finger Proteins in mRNA Binding

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Summary

A small family of mammalian zinc finger proteins containing an unusual putative tandem zinc finger motif was identified approximately 13 years ago. The tandem zinc finger domain was characterized by two hypothetical fingers with identical Cx8Cx5Cx3H spacing, with exactly 18 amino acids between the carboxyl terminal H of the first zinc finger and the amino terminal C of the second zinc finger. The two fingers also shared a characteristic amino-terminal lead-in sequence of RYKTEL or a close variant. Although first thought to be transcription factors, these proteins are becoming better understood as the result of experiments with knockout mice for tristetraprolin (TTP), currently the best-studied member of the family. These mice developed a systemic inflammatory syndrome found to be secondary to elevations of tumor necrosis factor alpha (TNF) and possibly granulocyte-macrophage colony-stimulating factor (GM-CSF). These elevations were found to be due to stabilized mRNAs for these cytokines, and subsequent work found that TTP could bind to the AU-rich elements within the 3′-untranslated region of these mRNAs and destabilize them, apparently by initiating a process of 3′–5′ deadenylation. This chapter will summarize some of our current thinking about this small but interesting protein family, including binding site and binding domain characterization, and recent developments in mutagenesis and structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laity JH, Lee BM, Wright PE. Zinc finger proteins: New insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  2. Gomperts M, Pascall JC, Brown KD. The nucleotide sequence of a cDNA encoding an EGF-inducible gene indicates the existence of a new family of mitogen-induced genes. Oncogene 1990; 5(7):1081–1083.

    PubMed  CAS  Google Scholar 

  3. Varnum BC, Lim RW, Sukhatme VP et al. Nucleotide sequence of a cDNA encoding TIS11, a message induced in Swiss 3T3 cells by the tumor promoter tetradecanoyl phorbol acetate. Oncogene 1989; 4(1):119–120.

    PubMed  CAS  Google Scholar 

  4. Lai WS, Stumpo DJ, Blackshear PJ. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem 1990; 265(27):16556–16563.

    PubMed  CAS  Google Scholar 

  5. Ma Q, Herschman HR. A corrected sequence for the predicted protein from the mitogen-inducible TIS11 primary response gene. Oncogene 1991; 6(7):1277–1278.

    PubMed  CAS  Google Scholar 

  6. DuBois RN, McLane MW, Ryder K et al. A growth factor-inducible nuclear protein with a novel cysteine/histidine repetitive sequence. J Biol Chem 1990; 265(31):19185–19191.

    PubMed  CAS  Google Scholar 

  7. Varnum BC, Ma QF, Chi TH et al. The TIS11 primary response gene is a member of a gene family that encodes proteins with a highly conserved sequence containing an unusual Cys-His repeat. Mol Cell Biol 1991; 11(3):1754–1758.

    PubMed  CAS  Google Scholar 

  8. De J, Lai WS, Thorn JM et al. Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene 1999; 228(1–2):133–145.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips RS, Ramos SB, Blackshear PJ. Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 2002; 277(13):11606–11613.

    Article  PubMed  CAS  Google Scholar 

  10. Blackshear PJ. The CCCH tandem zinc finger domain as a novel nucleic acid binding element. In: Iuchi S, KN, ed. Zinc Finger Proteins. 2003:in press.

    Google Scholar 

  11. te Kronnie G, Stroband H, Schipper H et al. Zebrafish CTH1, a C3H zinc finger protein, is expressed in ovarian oocytes and embryos. Dev Genes Evol 1999; 209(7):443–446.

    Article  Google Scholar 

  12. Blackshear PJ. Xenopus laevis genomic biomarkers for environmental toxicology studies. In: WsaS WA, ed. Biomarkers of environmentally associated disease. LLC: CRC Press, 2002:339–353.

    Google Scholar 

  13. Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998; 281(5379):1001–1005.

    Article  PubMed  CAS  Google Scholar 

  14. Taylor GA, Carballo E, Lee DM et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 1996; 4(5):445–454.

    Article  PubMed  CAS  Google Scholar 

  15. Carballo E, Gilkeson GS, Blackshear PJ. Bone marrow transplantation reproduces the tristetraprolin-deficiency syndrome in recombination activating gene-2 (-/-) mice. Evidence that monocyte/macrophage progenitors may be responsible for TNFalpha overproduction. J Clin Invest 1997; 100(5):986–995.

    Article  PubMed  CAS  Google Scholar 

  16. Lai WS, Carballo E, Strum JR et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999; 19(6):4311–4323.

    PubMed  CAS  Google Scholar 

  17. Lai WS, Carballo E, Thorn JM et al. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 2000; 275(23):17827–17837.

    Article  PubMed  CAS  Google Scholar 

  18. Lai WS, Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA: Tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J Biol Chem 2001; 276(25):23144–23154.

    Article  PubMed  CAS  Google Scholar 

  19. Blackshear PJ, Lai WS, Kennington EA et al. Characteristics of the interaction of a synthetic human tristetraprolin tandem zinc finger peptide with AU-rich element-containing RNA substrates. J Biol Chem 2003; 278(22):19947–19955.

    Article  PubMed  CAS  Google Scholar 

  20. Carballo E, Lai WS, Blackshear PJ. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 2000; 95(6):1891–1899.

    PubMed  CAS  Google Scholar 

  21. Carballo E, Blackshear PJ. Roles of tumor necrosis factor-alpha receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome. Blood 2001; 98(8):2389–2395.

    Article  PubMed  CAS  Google Scholar 

  22. Lai WS, Kennington EA, Blackshear PJ. Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 2003; 23(11):3798–3812.

    Article  PubMed  CAS  Google Scholar 

  23. Worthington MT, Pelo JW, Sachedina MA et al. RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristeraprolin protein. J Biol Chem 2002; 277(50):48558–48564.

    Article  PubMed  CAS  Google Scholar 

  24. Garcia-Castillo J. Interactions between tristetraprolin and the TNFa mRNA of the Marine Fish Gilthead Seabream. Paper presented at: International Society for Developmental and Comparative Immunology (ISDCI)-9th International Congress. Scotland: University of St Andrews, 2003.

    Google Scholar 

  25. Michel SL, Guerrerio AL, Berg JM. Selective RNA binding by a single CCCH zinc-binding domain from Nup475 (Tristetraprolin). Biochemistry 2003; 42(16):4626–4630.

    Article  PubMed  CAS  Google Scholar 

  26. Lai WS, Kennington EA, Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA: Nonbinding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J Biol Chem 2002; 277(11):9606–9613.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor GA, Thompson MJ, Lai WS et al. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 1996; 10(2):140–146.

    Article  PubMed  CAS  Google Scholar 

  28. Murata T, Yoshino Y, Morita N et al. Identification of nuclear import and export signals within the structure of the zinc finger protein TIS11. Biochem Biophys Res Commun 2002; 293(4):1242–1247.

    Article  PubMed  CAS  Google Scholar 

  29. Thompson MJ, Lai WS, Taylor GA et al. Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: Zinc finger-mediated impairment of cell growth. Gene 1996; 174(2):225–233.

    Article  PubMed  CAS  Google Scholar 

  30. Hudson BP, Martinez-Yamout MA, Dyson HJ et al. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 2004; 11(3):257–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Blackshear, P.J., Phillips, R.S., Lai, W.S. (2005). Tandem CCCH Zinc Finger Proteins in mRNA Binding. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_13

Download citation

Publish with us

Policies and ethics