Skip to main content

Chloroplast to Leaf

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Light that plants encounter in the environment originates mostly from the sun. The spectral properties of sunlight fundamentally reflect the surface temperature of the sun (∼5800 K). However, the solar spectrum is modified by the earth’s atmosphere due to absorption by water and CO2, and by scattering. Light can either be expressed in terms of an energy flux or a quantum flux. The energy content of a quanta depends on its wavelength, decreasing as wavelength increases. Energy flux (E, W m−2) can be calculated from quantum flux (I, mol m−2 s−1) for a given wavelength (λ, m) with the following equation: E = IN 0 hc/λ where N 0 is Avogadro’s number (6.02 × 1023), h is Planck’s constant (6.63 × 10−34 J s photon−1) and c is the speed of light (3 × 108 m s−1). For example, 1 µmol quanta m−2 s−1 of 400 nm light is equivalent to 0.3 W m−2, while for 700 nm light it is 0.17 W m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson, P. A. 1995. The structure and function of the chloroplast photosynthetic membrane—A model for the domain organization. Photosyn. Res. 46:141–149.

    Article  CAS  Google Scholar 

  • Albertsson, P. A. 2001. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 6:349–354.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. M. 1999. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: A personal perspective. Aust. J. Plant Physiol. 26:625–639.

    Article  CAS  Google Scholar 

  • Andersson, B., and Anderson, J. M. 1980. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593:427–440.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, J., Wentworth, M., Walters, R. G., Howard, C. A., Ruban, A. V., Horton, P., and Jansson, S. 2003. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II—Effects on photosynthesis, grana stacking and fitness. Plant J. 35:350–361.

    Article  CAS  PubMed  Google Scholar 

  • Andreasson, E., and, Albertsson, P. A. 1993. Heterogeneity in photosystem-I—The larger antenna of photosystem-I-alpha is due to functional connection to a special pool of LHCII. Biochim. Biophys. Acta 1141:175–182.

    Article  Google Scholar 

  • Andreasson, E., Svensson, P., Weibull, C., and, Albertsson, P. A. 1988. Separation and characterization of stroma and grana membranes—Evidence for heterogeneity in antenna size of both photosystem-I and photosystem-II. Biochim. Biophys. Acta 936:339–350.

    Article  CAS  Google Scholar 

  • Augustynowicz, J., and Gabrys, H. 1999. Chloroplast movements in fern leaves: Correlation of movement dynamics and environmental flexibility of the species. Plant Cell Environ. 22:1239–1248.

    Article  Google Scholar 

  • Björkman, O., and Demmig, B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504.

    Article  Google Scholar 

  • Boekema, E. J., Boonstra, A. F., Dekker, J. P., and Rogner, M. 1994. Electron microscopic structural analysis of photosystem-I, photosystem-II, and the cytochrome-b6/f complex from green plants and cyanobacteria. J. Bioenerg. Biomemb. 26:17–29.

    Article  CAS  Google Scholar 

  • Boekema, E. J., van Roon, H., van Breemen, J. F. L., and Dekker, J. P. 1999. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Europ. J. Biochem. 266:444–452.

    Article  CAS  PubMed  Google Scholar 

  • Boekema, E. J., van Breemen, J. F. L., van Roon, H., and Dekker, J. P. 2000. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J. Mol. Biol. 301:1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Briggs, W. R., Beck, C. F., Cashmore, A. R., Christie, J. M., Hughes, J., Jarillo, J. A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rüdiger, W., Sakai, T., Takano, M., Wada, M., and Watson, J. C. 2001. The phototropin family of photoreceptors. Plant Cell 13:993–997.

    Article  CAS  PubMed  Google Scholar 

  • Britz, S. J. 1979. Chloroplast and nuclear migration. In: Encyclopedia of Plant Physiology, New Series, Vol. 7, M. Feinleib (ed.), pp. 170–205. New York: Springer-Verlag.

    Google Scholar 

  • Brugnoli, E., and Björkman, O. 1992. Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to DpH and zeaxanthin formation. Photosynth. Res. 32:23–35.

    Article  CAS  Google Scholar 

  • Chazdon, R. L., and Field, C. B. 1987. Photographic estimation of photosynthetically active radiation: Evaluation of a computerized technique. Oecologia 73:525–532.

    Article  Google Scholar 

  • DePury, D. G. G., and Farquhar, G. D. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20:537–557.

    Article  Google Scholar 

  • Ehleringer, J. R., and Björkman, O. 1978. A comparison of photosynthetic characteristics of Encelia species possessing glabrous and pubescent leaves. Plant Physiol. 62: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Evans, J. R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Aust. J. Plant Physiol. 14:69–79.

    Article  Google Scholar 

  • Evans, J. R. 1995. Carbon fixation profiles do reflect light absorption profiles in leaves. Aust. J. Plant Physiol. 22:865–873.

    Article  CAS  Google Scholar 

  • Evans, J. R. 1999. Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytologist 143:93–104.

    Article  Google Scholar 

  • Evans, J. R., and Anderson, J. M. 1987. Absolute absorption spectra for the five major chlorophyll-protein complexes and their 77K fluorescence excitation spectra. Biochim. Biophys. Acta 892:75–82.

    Article  CAS  Google Scholar 

  • Evans, J. R., and Poorter, H. 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24:755–767.

    Article  CAS  Google Scholar 

  • Evans, J. R., and Vellen, L. 1996. Wheat cultivars differ in transpiration efficiency and CO2 diffusion inside their leaves. In: Crop Research in Asia: Achievements and Perspective, R. Ishii and T. Horie (eds.), pp. 326–329. Tokyo: Asian Crop Science Association.

    Google Scholar 

  • Evans, J. R., and Vogelmann, T. C. 2003. Profiles of C-14 fixation through spinach leaves in relation to light absorption and photosynthetic capacity. Plant Cell Environ. 26:547–560.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., and Roderick, M. L. 2003. Atmospheric science: Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998.

    Article  CAS  PubMed  Google Scholar 

  • Gabrys, H., and Walczak, T. 1980. Photometric study of chloroplast phototranslocations in leaves of land plants. Acta Physiol. Plantarum 2:281–290.

    Google Scholar 

  • Gorton, H. L., Williams, W. E., and Vogelmann, T. C. 1999. Chloroplast movement in Alocasia macrorrhiza. Physiol. Plantarum 106:421–428.

    Article  CAS  Google Scholar 

  • Gorton, H. L., Herbert, S. K., and Jogelmann, T. C. 2003. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaevs of Alocasia brisbanensis. Plant Physiol. 132:1–11.

    Article  Google Scholar 

  • Haupt, W. 1959. Die Chloroplastendrehung bei Mougeotia. 1. Über den quantitativen Lichtbedarf der Schwachlichtbewegung. Planta 53:484–501.

    Article  CAS  Google Scholar 

  • Haupt, W. 1999. Chloroplast movement: From phenomenology to molecular biology. Prog. Botany 60:1–36.

    Google Scholar 

  • Haupt, W., and Scheuerlein, R. 1990. Chloroplast movement. Plant Cell Environ. 13:595–614.

    Article  Google Scholar 

  • Haupt, W., and Thiele, R. 1961. Chloroplastenbewegung bei Mesotaenium. Planta 56:388–401.

    Article  Google Scholar 

  • Hoel, B. O., and Solhaug, K. A. 1998. Effect of irradiance on chlorophyll estimation with the Minolta SPAD-502 leaf chlorophyll meter. Ann. Bot. 82:389–392.

    Article  Google Scholar 

  • Inoue, Y., and Shibata, K. 1973. Light-induced chloroplast rearrangements and their action spectra as measured by absorption spectrophotometry. Planta 114:341–358.

    Article  Google Scholar 

  • Inoue, Y., and Shibata, K. 1974. Comparative examination of terrestrial plant leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol. 15:717–721.

    Google Scholar 

  • Izutani, Y., Takagi, S., and Nagai, R. 1990. Orientation movements of chloroplasts in Vallisneria epidermal cells: Different effects of light at low-and high-fluence rate. Photochem. Photobiol. 51:105–111.

    Article  CAS  Google Scholar 

  • Jarillo, J. A., Gabrys, H., Capel, J., Alaonso, J. M., Ecker, J. R., and Cashmore, A. R. 2001. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410:952–954.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, W. J., Park, Y.-I., Suh, K., Raven, J. A., Yoo, O. J., and Liu, J. R. 2002. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol. 129:112–121.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, P., Fromme, P., Witt, H. T., Klukas, O., Saenger, W., and Krauss, N. 2001. Threedimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 411:909–917.

    Article  CAS  PubMed  Google Scholar 

  • Kadota, A., Kohyama, I., and Wada, M. 1989. Polarotropism and photomovement of chloroplasts in the protonema of the ferns Pteris and Adiantum: Evidence for the possible lack of dichroic phytochrome in Pteris. Plant Cell Physiol. 30:523–531.

    Google Scholar 

  • Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M. 2001. Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141.

    Article  CAS  PubMed  Google Scholar 

  • Karabourniotis, G., Bornman, J. F., and Nikolopoulos, D. 2000. A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ. 23:423–430.

    Article  Google Scholar 

  • Kirchhoff, H., Mukherjee, U., and Galla, H. J. 2002. Molecular architecture of the thylakoid membrane: Lipid diffusion space for plastoquinone. Biochemistry 41:4872–4882.

    Article  CAS  PubMed  Google Scholar 

  • Koizumi, M., Takahashi, K., Mineuchi, K., Nakamura, T., and Kano, H. 1998. Light gradients and the transverse distribution of chlorophyll fluorescence in mangrove and camellia leaves. Ann. Bot. 81:527–533.

    Article  CAS  Google Scholar 

  • Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y. 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621.

    Article  CAS  PubMed  Google Scholar 

  • Lechowski, Z. 1972. Action spectrum of chloroplast displacements in leaves of land plants. Acta Protozool. 11:202–209.

    Google Scholar 

  • Lechowski, Z. 1974. Chloroplast arrangement as a factor of photosynthesis in multilayered leaves. Acta Soc. Bot. Pol. 43:531–540.

    Google Scholar 

  • Lelatko, Z. 1970. Some aspects of chloroplast movement in leaves of terrestrial plants. Acta Soc. Bot. Pol. 39:453–468.

    Google Scholar 

  • Malec, P., Rinaldi, R. A., and Gabrys, H. 1996. Light-induced chloroplast movements in Lemna trisulca. Identification of the motile system. Plant Sci. 120:127–137.

    Article  CAS  Google Scholar 

  • Mayer, F. 1964. Lichtorientierte Chloroplasten-Verlagerungen bei Selaginella martensii. Z. Bot. 52:346–381.

    Google Scholar 

  • McCain, D. 1998. Chloroplast movement can be impeded by crowding. Plant Sci. 135:219–225.

    Article  CAS  Google Scholar 

  • McCree, K. J. 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. For. Meteorol. 9:191–216.

    Article  Google Scholar 

  • Miller, K. R., Staehelin, L. A. 1977. Analysis of the thylakoid outer surface: Coupling factor is limited to unstacked membrane regions. Biochim. Biophys. Acta 68:30–47.

    Google Scholar 

  • Park, Y. I., Chow, W. S., and Anderson, J. M. 1996. Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol. 111:867–875.

    CAS  PubMed  Google Scholar 

  • Pearcy, R. W. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:421–453.

    Article  CAS  Google Scholar 

  • Pons, T. L., and Pearcy, R. W. 1992. Photosynthesis in flashing light in soybean leaves grown in different conditions. 2. Lightfleck utilization efficiency. Plant Cell Environ. 15:577–584.

    Article  Google Scholar 

  • Richter, T., and Fukshansky, L. 1996a. Optics of a bifacial leaf. 1. A novel combined procedure for deriving the optical parameters. Photochem. Photobiol. 63:507–516.

    Article  CAS  Google Scholar 

  • Richter, T., and Fukshansky, L. 1996b. Optics of a bifacial leaf. 2. Light regime as affected by the leaf structure and the light source. Photochem. Photobiol. 63:517–527.

    Article  CAS  Google Scholar 

  • Richter, T., and Fukshansky, L. 1998. Optics of a bifacial leaf. 3. Implications for photosynthetic performance. Photochem. Photobiol. 68:337–352.

    Article  CAS  Google Scholar 

  • Roden, J. S., and Pearcy, R. W. 1993. Effect of leaf flutter on the light environment of poplars. Oecologia 93:201–207.

    Article  Google Scholar 

  • Roderick, M. L., Farquhar, G. D., Berry, S. L., and Noble, I. R. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30.

    Article  Google Scholar 

  • Ruban, A. V., Wentworth, M., Yakushevska, A. E., Andersson, J., Lee, P. J., Keegstra, W., Dekker, J. P., Boekema, E. J., Jansson, S., and Horton, P. 2003. Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421:648–652.

    Article  CAS  PubMed  Google Scholar 

  • Rüffer, U., Pfau, J., and Nultsch, W. 1981. Movements and arrangements of Dictyota phaeoplasts in response to light and darkness. Z. Pflanzenphysiol. 101:283–293.

    Google Scholar 

  • Sakai, T., Kagawa, T., Kasahara, M., Swartz, T. E., Christie, J. M., Briggs, W. R., Wada, M., and Okada, K. 2001. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloropalst relocation. Proc. Natl. Acad. Sci. 98:6969–6974.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Wada, M., and Kadota, A. 2001. Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J. Cell Sci. 114:269–279.

    CAS  PubMed  Google Scholar 

  • Scholz, A. 1976. Lichtorientierte Chloroplastenbewegung bei Hormidium flaccidum: Perception der Lichtrichtung mittels Sammellinseneffekt. Z. Pflanzenphysiol. 77:406–421.

    Google Scholar 

  • Schubert, W. D., Klukas, O., Saenger, W., Witt, H. T., Fromme, P., and Krauss, N. 1998. A common ancestor for oxygenic and anoxygenic photosynthetic systems—A comparison based on the structural model of photosystem I. J. Mol. Biol. 280:297–314.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, K. 1967. Wirkungsspektren für die Starklichtbewegung der Chloroplasten, die Photodinese und die lichtabhängige Viskositätsänderung bei Vallisneria spiralis ssp. torta. Z. Pflanzenphysiol. 56:246–261.

    Google Scholar 

  • Slesak, I., and Gabrys, H. 1996. Role of photosynthesis in the control of blue lightinduced chloroplast movements. Inhibitor study. Acta Physiol. Plantarum 18:135–145.

    CAS  Google Scholar 

  • Smith, W. K., Vogelmann, T. C., Bell, D. T., DeLucia, B. H., and Shepherd, K. A. 1997. Leaf form and photosynthesis. BioScience 47:785–793.

    Article  Google Scholar 

  • Staehelin, L.A., and van der Staay, G. W. M. 1996. Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: Oxygenic Photosynthesis: The Light Reactions. D. R. Ort and C. F. Yocum eds. pp. 11–30. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Stefansson, H., Wollenberger, L., Yu, S. G., and Albertsson, P. A. 1995. Phosphorylation of thylakoids and isolated subthylakoid vesicles derived from different structural domains of the thylakoid membrane from spinach chloroplast. Biochim. Biophys. Acta Bioenerget. 1231:323–334.

    Article  Google Scholar 

  • Svensson, P., Andreasson, E., and Albertsson, P. A. 1991. Heterogeneity among Photosystem-I. Biochim. Biophys. Acta 1060:45–50.

    Article  CAS  Google Scholar 

  • Takahashi, K., Mineuchi, K., Nakamura, T., Koizumi, M., and Kano, H. 1994. A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. Plant Cell Environ. 17:105–110.

    Article  Google Scholar 

  • Terashima, I., and Evans, J. R. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol. 29:143–155.

    CAS  Google Scholar 

  • Terashima, I., and Hikosaka, K. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18:1111–1128.

    Article  Google Scholar 

  • Terashima, I., and Inoue, Y. 1985. Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol. 26:781–785.

    CAS  Google Scholar 

  • Tlalka, M., and Fricker, M. 1999. The role of calcium in blue-light-dependent chloroplast movement in Lemna trisulca L. Plant J. 20:461–473.

    Article  CAS  PubMed  Google Scholar 

  • Tlalka, M., and Gabrys, H. 1993. Influence of calcium on blue-light-induced chloroplast movement in Lemna trisulca L. Planta 189:491–498.

    Article  CAS  Google Scholar 

  • Trojan, A., and Gabrys, H. 1996. Chloroplast distribution in Arabidopsis thaliana (L.) depends on light conditions during growth. Plant Physiol. 111:419–425.

    CAS  PubMed  Google Scholar 

  • Ustin, S. L., Jacquemoud, S., and Govaerts, Y. 2001. Simulation of photon transport in a three-dimensional leaf: Implications for photosynthesis. Plant Cell Environ. 24:1095–1103.

    Article  Google Scholar 

  • Vogelmann, T. C. 1993. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:231–251.

    Article  Google Scholar 

  • Vogelmann, T. C., Nishio, J. N., and Smith, W. K. 1996. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends in Pl. Sci. 1:65–71.

    Article  Google Scholar 

  • Vogelmann, T. C., and Evans, J. R. 2002. Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ. 25:1313–1323.

    Article  Google Scholar 

  • Vogelmann, T. C., and Han, T. 2000. Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ. 23:1303–1311.

    Article  CAS  Google Scholar 

  • Wada, M., and Kagawa, T. 2001. Light-controlled chloroplast movement. In Photomovement, Vol. 1. M. Lebert (ed.), pp. 897–924. New York: Elsevier.

    Chapter  Google Scholar 

  • Wada, M., Grolig, F., and Haupt, W. 1993a. Light-oriented chloroplast positioning. Contribution to progress in photobiology. J. Photochem. Photobiol. 17:3–25.

    Article  CAS  Google Scholar 

  • Wada, M., Grolig, F., and Haupt, W. 1993b. Light-oriented chloroplast positioning. Contribution to progress in photobiology. J Photochem Photobiol. 17:3–25.

    Article  CAS  Google Scholar 

  • Wagner, G., Haupt, W., and Laux, A. 1972. Reversible inhibition of chloroplast movement by cytochalasin B in the green alga Mougeotia. Science 176:808–809.

    Article  CAS  PubMed  Google Scholar 

  • Weidinger, M., and Ruppel, H. 1985. Ca2+-requirement for a blue-light-induced chloroplast translocation in Eremosphaera viridis. Protoplasma 124:184–187.

    Article  Google Scholar 

  • Williams, W. E., Gorton, H. L., and Witiak, S. M. 2003. Chloroplast movements in the field. Plant Cell Environ. 26:2005–2014.

    Article  Google Scholar 

  • Yakushevska, A. E., Jensen, P. E., Keegstra, W., van Roon, H., Scheller, H. V., Boekema, E. J., and Dekker, J. P. 2001. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana. Eur. J. Biochem. 268:6020–6028.

    Article  CAS  PubMed  Google Scholar 

  • Yatsuhashi, H. 1996. Photoregulation systems for light-oriented chloroplast movement. J. Plant Res. 109:139–146.

    Article  CAS  Google Scholar 

  • Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. 2001. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743.

    Article  CAS  PubMed  Google Scholar 

  • Zurzycki, J. 1955. Chloroplasts arrangement as a factor in photosynthesis. Acta Soc. Bot. Pol. 24:27–63.

    Google Scholar 

  • Zurzycki, J. 1957. The destructive effect of intense light on the photosynthetic apparatus. Acta Soc. Bot. Pol. 26:157–175.

    CAS  Google Scholar 

  • Zurzycki, J. 1961. The influence of chloroplast displacements on the optical properties of leaves. Acta Soc. Bot. Pol. 30:503–527.

    Google Scholar 

  • Zurzycki, J., and Lelatko, Z. 1969. Action dichroism in the chloroplasts rearrangements in various plant species. Acta Soc. Bot. Pol. 38:493–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Evans, J.R., Vogelmann, T.C., Williams, W.E., Gorton, H.L. (2004). Chloroplast to Leaf. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics