Skip to main content

CD95L/FasL and TRAIL in Tumour Surveillance and Cancer Therapy

  • Chapter
The Link Between Inflammation and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 130))

Abstract

The membrane-bound death ligands CD95L/FasL and TRAIL, which activate the corresponding death receptors CD95/Fas, TRAILR1 and TRAILR2, induce apoptosis in many tumour cells, but can also elicit an inflammatory response. This chapter focuses on the relevance of CD95L/FasL and TRAIL for the tumour surveillance function of natural killer cells and cytotoxic T-cells and discuss current concepts of utilizing these ligands in tumour therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Ambar, B.B. et al. (1999). Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum. Gene Ther. 10: 1641–1648.

    PubMed  CAS  Google Scholar 

  • Almasan, A. and Ashkenazi, A. (2003). Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14: 337–48.

    PubMed  CAS  Google Scholar 

  • Aoki, K. et al. (2000). Restricted expression of an adenoviral vector encoding Fas ligand (CD95L) enhances safety for cancer gene therapy. Mol. Ther. 1: 555–565.

    PubMed  CAS  Google Scholar 

  • Aoki, K. et al. (2001). Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity. Nat. Immunol. 2: 333–337.

    PubMed  CAS  Google Scholar 

  • Arai H. et al. (1997). Inhibition of the alloantibody response by CD95 ligand. Nat. Med. 3: 843–848.

    PubMed  CAS  Google Scholar 

  • Armeanu, S. et al. (2003). Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res. 63: 2369–2372.

    PubMed  CAS  Google Scholar 

  • Ashkenazi, A. et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104: 155–162.

    PubMed  CAS  Google Scholar 

  • Bakker, A.B. et al. (1998). Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL. J. Immunol. 160: 5239–5245.

    PubMed  CAS  Google Scholar 

  • Behrens, C.K. et al. (2001). CD95 ligand-expressing tumors are rejected in anti-tumor TCR transgenic perforin knockout mice. J. Immunol. 166: 3240–3247.

    PubMed  CAS  Google Scholar 

  • Bennett, M.W. et al. (1998). The Fas counterattack in vivo: apoptotic depletion of tumorinfiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J. Immunol. 160: 5669–5675.

    PubMed  CAS  Google Scholar 

  • Boatright, K.M. et al. (2003). A unified model for apical caspase activation. Mol. Cell. 11: 529–541.

    PubMed  CAS  Google Scholar 

  • Bodmer, J.L. et al. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell Biol. 2: 241–243.

    PubMed  CAS  Google Scholar 

  • Boldin, M.P. et al. (1995). A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270: 7795–7798.

    PubMed  CAS  Google Scholar 

  • Bremer, E. et al. (2004). Target cell-restricted and-enhanced apoptosis induction by a scFv: sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int. J. Cancer 109: 281–290.

    PubMed  CAS  Google Scholar 

  • Burdin, N. et al. (1998). Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J. Immunol. 161: 3271–3281.

    PubMed  CAS  Google Scholar 

  • Chen, Q. et al. (2001). Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98: 2183–2192.

    PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M. et al. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512.

    PubMed  CAS  Google Scholar 

  • Chuntharapai, A. et al. (2001). Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166: 4891–4898.

    PubMed  CAS  Google Scholar 

  • Conejo-Garcia, J.R. et al. (2003). Letal, A tumor-associated NKG2D immunoreceptor ligand, induces activation and expansion of effector immune cells. Cancer Biol. Ther. 2: 446–451.

    PubMed  CAS  Google Scholar 

  • Cory, S. et al. (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.

    PubMed  CAS  Google Scholar 

  • Cosman, D. et al. (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14: 123–133.

    PubMed  CAS  Google Scholar 

  • Davidson, W.F. et al. (1998). Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J. Exp. Med. 187: 1825–1838.

    PubMed  CAS  Google Scholar 

  • Dighe, A.S. et al. (1994). Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1: 447–456.

    PubMed  CAS  Google Scholar 

  • Djerbi, M. et al. (1999). The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med. 190: 1025–1032.

    PubMed  CAS  Google Scholar 

  • Donepudi, M. et al. (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell 11: 543–549.

    PubMed  CAS  Google Scholar 

  • Dunn, G.P. et al. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137–148.

    PubMed  CAS  Google Scholar 

  • Eberl, G. and MacDonald, H.R. (2000). Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30: 985–992.

    PubMed  CAS  Google Scholar 

  • Fesik, S.W. (2000). Insights into programmed cell death through structural biology. Cell 103: 273–282.

    PubMed  CAS  Google Scholar 

  • Gately, M.K. et al. (1994). Interleukin-12: a cytokine with therapeutic potential in oncology and infectious diseases. Ther. Immunol. 1: 187–196.

    PubMed  CAS  Google Scholar 

  • Gong, B. and Almasan, A. (2000). Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res. 60: 5754–5760.

    PubMed  CAS  Google Scholar 

  • Griffith, T.S. and Broghammer, E.L. (2001). Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol. Ther. 4: 257–266.

    PubMed  CAS  Google Scholar 

  • Groh, V. et al. (1999). Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. U.S.A. 96: 6879–6884.

    PubMed  CAS  Google Scholar 

  • Guery, L. et al. (2000). Expression of Fas ligand improves the effect of IL-4 in collagen-induced arthritis. Eur. J. Immunol. 30: 308–315.

    PubMed  CAS  Google Scholar 

  • Hahne, M. et al. (1996). Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274: 1363–1366.

    PubMed  CAS  Google Scholar 

  • Harper, N. et al. (2003). Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol Chem. 278: 25534–25541.

    PubMed  CAS  Google Scholar 

  • Hohlbaum, A.M. et al. (2000). Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J. Exp. Med. 191: 1209–1220.

    PubMed  CAS  Google Scholar 

  • Holler, N. et al. (2003). Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell Biol. 23: 1428–1440.

    PubMed  CAS  Google Scholar 

  • Hsu, H. et al. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81: 495–504.

    PubMed  CAS  Google Scholar 

  • Huang, D.C. et al. (1999). Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc. Natl Acad. Sci. U.S.A. 96: 14871–14876.

    PubMed  CAS  Google Scholar 

  • Hyer, M.L. et al. (2000). Intracellular Fas ligand expression causes Fas-mediated apoptosis in human prostate cancer cells resistant to monoclonal antibody-induced apoptosis. Mol. Ther. 2: 348–358.

    PubMed  CAS  Google Scholar 

  • Ichikawa, K. et al. (2000). A novel murine anti-human Fas mAb which mitigates lymphadenopathy without hepatotoxicity. Int. Immunol. 12: 555–562.

    PubMed  CAS  Google Scholar 

  • Idris, A.H. et al. (1998). Genetic control of natural killing and in vivo tumor elimination by the Chok locus. J. Exp. Med. 188: 2243–2256.

    PubMed  CAS  Google Scholar 

  • Idris, A.H. et al. (1999). The natural killer gene complex genetic locus Chok encodes Ly-49D, a target recognition receptor that activates natural killing. Proc. Natl Acad. Sci. U.S A. 96: 6330–6335.

    PubMed  CAS  Google Scholar 

  • Jinushi, M. et al. (2003). Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int. J. Cancer 104: 354–361.

    PubMed  CAS  Google Scholar 

  • Jo, M. et al. (2000). Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat. Med. 6: 564–567.

    PubMed  CAS  Google Scholar 

  • Jung, G. et al. (2001). Target cell-restricted triggering of the CD95 (APO-1/Fas) death receptor with bispecific antibody fragments. Cancer Res. 61: 1846–1848.

    PubMed  CAS  Google Scholar 

  • Juo, P. et al. (1998). Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8: 1001–1008.

    PubMed  CAS  Google Scholar 

  • Juo, P. et al. (1999). FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 10: 797–804.

    PubMed  CAS  Google Scholar 

  • Kang, S.M. et al. (2000). A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation 69: 1813–1817.

    PubMed  CAS  Google Scholar 

  • Kaplan, D.H. et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. U.S.A. 95: 7556–7561.

    PubMed  CAS  Google Scholar 

  • Karre, K. et al. (1986). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319: 675–678.

    PubMed  CAS  Google Scholar 

  • Kawamura, T. et al. (1998). Critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J. Immunol. 160: 16–19.

    PubMed  CAS  Google Scholar 

  • Kayagaki, N. et al. (1999). Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J. Immunol. 163: 1906–1913.

    PubMed  CAS  Google Scholar 

  • Kelley, S.K. et al. (2001). Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther. 299: 31–38.

    PubMed  CAS  Google Scholar 

  • Kim, S.H. et al. (2002). Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL. Mol. Ther. 6: 584–590.

    PubMed  CAS  Google Scholar 

  • Kischkel, F.C. et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14: 5579–5588.

    PubMed  CAS  Google Scholar 

  • Kischkel, F.C. et al. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12: 611–620.

    PubMed  CAS  Google Scholar 

  • Koh, C.Y. et al. (2001). Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 91: 3132–3137.

    Google Scholar 

  • Kuang, A. A. et al. (2000). FADD is required for DR4-and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J. Biol. Chem. 275: 25065–25068.

    PubMed  CAS  Google Scholar 

  • Lawrence, D. et al. (2001). Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat. Med. 7: 383–385.

    PubMed  CAS  Google Scholar 

  • Lee, J.K. et al. (2000). IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J. Immunol. 164: 231–239.

    PubMed  CAS  Google Scholar 

  • Leverkus, M. et al. (2003). Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol. Cell Biol. 23: 117–190.

    Google Scholar 

  • Lin, T. et al. (2002). Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 21: 8020–8028.

    PubMed  CAS  Google Scholar 

  • Lin, T. et al. (2003). Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis effects in chemosensitive and chemoresistant breast cancers. Mol. Ther. 8:441–448.

    PubMed  CAS  Google Scholar 

  • Locksley, R.M. et al. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487–501.

    PubMed  CAS  Google Scholar 

  • Medema, J.P. et al. (1999). Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190: 1033–1038.

    PubMed  CAS  Google Scholar 

  • Micheau, O. and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    PubMed  CAS  Google Scholar 

  • Miwa, K. et al. (1998). Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat. Med. 4: 1287–1292.

    PubMed  CAS  Google Scholar 

  • Morelli, A.E. et al. (1999). Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. J. Gen. Virol. 80: 571–583.

    PubMed  CAS  Google Scholar 

  • Muhlenbeck, F. et al. (2000). The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J. Biol. Chem. 275: 32208–32213.

    PubMed  CAS  Google Scholar 

  • Muzio, M. et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 85: 817–827.

    PubMed  CAS  Google Scholar 

  • Niehans, G.A. et al. (1997). Human lung carcinomas express Fas ligand. Cancer Res. 57: 1007–1012.

    PubMed  CAS  Google Scholar 

  • Nishimatsu, H. et al. (1999). CD95 ligand expression enhances growth of murine renal cell carcinoma in vivo. Cancer Immunol. Immunother. 48: 56–61.

    PubMed  CAS  Google Scholar 

  • Nishimura, Y. et al. (1997a). In vivo analysis of Fas antigen-mediated apoptosis: effects of agonistic anti-mouse Fas mAb on thymus, spleen and liver. Int. Immunol. 9: 307–316.

    PubMed  CAS  Google Scholar 

  • Nishimura-Morita, Y. et al. (1997b). Amelioration of systemic autoimmune disease by the stimulation of apoptosis-promoting receptor Fas with anti-Fas mAb. Int. Immunol. 9: 1793–1799.

    PubMed  CAS  Google Scholar 

  • O’Connell, J. et al. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J. Exp. Med. 184: 1075–1082.

    PubMed  Google Scholar 

  • Ogasawara, J. et al. (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809.

    PubMed  CAS  Google Scholar 

  • Okamoto, S. et al. (1999). Overexpression of Fas ligand does not confer immune privilege to a pancreatic beta tumor cell line (betaTC-3). J. Surg. Res. 84: 77–81.

    PubMed  CAS  Google Scholar 

  • Ottonello, L. et al. (1999). Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J. Immunol. 162: 3601–3606.

    PubMed  CAS  Google Scholar 

  • Owen-Schaub, L.B. et al. (1998). Fas and Fas ligand interactions suppress melanoma lung metastasis. J. Exp. Med. 188: 1717–1723.

    PubMed  CAS  Google Scholar 

  • Owen-Schaub, L. et al. (2000). Fas and Fas ligand interactions in malignant disease. Int. J. Oncol. 17: 5–12.

    PubMed  CAS  Google Scholar 

  • Pende, D. et al. (2002). Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 62: 6178–6186.

    PubMed  CAS  Google Scholar 

  • Peng, S.L. et al. (1996). A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. J. Exp. Med. 184: 1149–1154.

    PubMed  CAS  Google Scholar 

  • Peter, M.E. and Krammer, P.H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 10: 26–35.

    PubMed  CAS  Google Scholar 

  • Rubinchik, S. et al. (2000). Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system. Gene Ther. 7: 875–885.

    PubMed  CAS  Google Scholar 

  • Rubinchik, S. et al. (2001). A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression. Mol. Ther. 4: 416–426.

    PubMed  CAS  Google Scholar 

  • Saelens, X. et al. (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23: 2861–2874.

    PubMed  CAS  Google Scholar 

  • Samel, D. et al. (2003). Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted Activation. J. Biol. Chem. 278: 32077–32082.

    PubMed  CAS  Google Scholar 

  • Scanlan, M.J. et al. (1994). Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl Acad. Sci. U.S.A. 91: 5657–5661.

    PubMed  CAS  Google Scholar 

  • Schmaltz, C. et al. (2002). T cells require TRAIL for optimal graft-versus-tumor activity. Nat. Med. 8: 1433–1437.

    PubMed  CAS  Google Scholar 

  • Schneider, P. et al. (1998). Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med. 187: 1205–1213.

    PubMed  CAS  Google Scholar 

  • Schroter, M. et al. (2000). Fas-dependent tissue turnover is implicated in tumor cell clearance. Oncogene 19: 1794–1800.

    PubMed  CAS  Google Scholar 

  • Seino, K. et al. (1997). Antitumor effect of locally produced CD95 ligand. Nat. Med. 3: 165–170.

    PubMed  CAS  Google Scholar 

  • Seino, K. et al. (1998) Chemotactic activity of soluble Fas ligand against phagocytes. J. Immunol. 161: 4484–4488.

    PubMed  CAS  Google Scholar 

  • Shankaran, V. et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–1111.

    PubMed  CAS  Google Scholar 

  • Shi, Y. (2002). Apoptosome: the cellular engine for the activation of caspase-9. Structure (Camb.) 10: 285–288.

    PubMed  CAS  Google Scholar 

  • Shimizu, M. et al. (1999). Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells. J. Immunol. 162: 7350–7357.

    PubMed  CAS  Google Scholar 

  • Shudo, K. et al. (2001). The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. Eur. J. Immunol. 31: 2504–2511.

    PubMed  CAS  Google Scholar 

  • Siegel, R.M. et al. (2000). Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288: 2354–2357.

    PubMed  CAS  Google Scholar 

  • Simon, A.K. et al. (2002). Fas ligand breaks tolerance to self-antigens and induces tumor immunity mediated by antibodies. Cancer Cell. 2: 315–322.

    PubMed  CAS  Google Scholar 

  • Smith, K.M. et al. (1998). Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161: 7–10.

    PubMed  CAS  Google Scholar 

  • Smyth, M.J. et al. (1999). Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162: 6658–6662.

    PubMed  CAS  Google Scholar 

  • Smyth, M.J. et al. (2001a). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193: 661–670.

    PubMed  CAS  Google Scholar 

  • Smyth, M.J. et al. (2001b). NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13: 459–463.

    PubMed  CAS  Google Scholar 

  • Smyth, M.J. et al. (2002). New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer 2: 850–861.

    PubMed  CAS  Google Scholar 

  • Sordillo, E.M. and Pearse, R.N. (2003). RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 97: 802–812.

    PubMed  Google Scholar 

  • Sova, P. et al. (2004). A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther. 9: 496–509.

    PubMed  CAS  Google Scholar 

  • Sprick, M.R. et al. (2000). FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12: 599–609.

    PubMed  CAS  Google Scholar 

  • Strand, S. et al. (1996). Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat. Med. 2: 1361–1366.

    PubMed  CAS  Google Scholar 

  • Street, S.E. et al. (2001). Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97: 192–197.

    PubMed  CAS  Google Scholar 

  • Street, S.E. et al. (2002). Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J. Exp. Med. 196: 129–134.

    PubMed  CAS  Google Scholar 

  • Suda, T. et al. (1997). Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J. Exp. Med. 186: 2045–2050.

    PubMed  CAS  Google Scholar 

  • Takeda, K. et al. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell. Immunol. 214: 194–200.

    PubMed  CAS  Google Scholar 

  • Takeda, K. et al. (2002). Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195: 161–169.

    PubMed  CAS  Google Scholar 

  • Takeda, K. et al. (2004). Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J. Exp. Med. 199: 437–448.

    PubMed  CAS  Google Scholar 

  • Talmadge, J.E. et al. (1980a). Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice. J. Natl Cancer Inst. 65: 929–935.

    PubMed  CAS  Google Scholar 

  • Talmadge, J.E. et al. (1980b). Role of NK cells in tumour growth and metastasis in beige mice. Nature 284: 622–624.

    PubMed  CAS  Google Scholar 

  • Traver, D. et al. (1998). Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 9: 47–57.

    PubMed  CAS  Google Scholar 

  • van den Broek, M.E. et al. (1996). Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184: 1781–1790.

    PubMed  Google Scholar 

  • van den Broek M.E. et al. (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur. J. Immunol. 25: 3514–3516.

    PubMed  Google Scholar 

  • Varfolomeev, E.E. et al. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267–276.

    PubMed  CAS  Google Scholar 

  • Vaux, D.L. and Silke, J. (2003). Mammalian mitochondrial IAP binding proteins. Biochem. Biophys. Res. Commun. 304: 499–504.

    PubMed  CAS  Google Scholar 

  • Vetter, C.S. et al. (2002). Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Invest. Dermatol. 118: 600–605.

    PubMed  CAS  Google Scholar 

  • Villunger, A. et al. (1997). Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood 90: 12–20.

    PubMed  CAS  Google Scholar 

  • Voelkel-Johnson, C. et al. (2002). Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Ther. 9: 164–172.

    PubMed  CAS  Google Scholar 

  • Wajant, H. (2003). Death receptors. Essays Biochem 39: 53–71.

    PubMed  CAS  Google Scholar 

  • Wajant, H. (2004). TRAIL and NFkappaB signalling-a complex relationship. Vitam. Horm. 67: 101–132.

    PubMed  CAS  Google Scholar 

  • Wajant, H. et al. (2001). Differential activation of TRAIL-R1 and-2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20: 4101–4106.

    PubMed  CAS  Google Scholar 

  • Walczak, H. et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5: 157–163.

    PubMed  CAS  Google Scholar 

  • Wigginton, J.M. et al. (2001). IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J. Clin. Invest. 108: 51–62.

    PubMed  CAS  Google Scholar 

  • Wigginton, J.M. et al. (2002). Synergistic engagement of an ineffective endogenous antitumor immune response and induction of IFN-gamma and Fas-ligand-dependent tumor eradication by combined administration of IL-18 and IL-2. J. Immunol. 169: 4467–4474.

    PubMed  CAS  Google Scholar 

  • Wuest, T. et al. (2002). TNF-selectokine: a novel prodrug generated for tumor targeting and site-specific activation of tumor necrosis factor. Oncogene 21: 4257–4265.

    PubMed  Google Scholar 

  • Yagita, H. et al. (1996). CD95 ligand in graft rejection. Nature 379: 682.

    PubMed  CAS  Google Scholar 

  • Yao, Q. et al. (2003). Intra-articular adenoviral-mediated gene transfer of trail induces apoptosis of arthritic rabbit synovium. Gene Ther. 10: 1055–1060.

    PubMed  CAS  Google Scholar 

  • Yeh, W.C. et al. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279: 1954–1958.

    PubMed  CAS  Google Scholar 

  • Zamai, L. et al. (1998). Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188: 2375–2380.

    PubMed  CAS  Google Scholar 

  • Zhang, H. et al. (1997). Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J. Clin. Invest. 100: 1951–1957.

    PubMed  CAS  Google Scholar 

  • Zhang, J. et al. (1998). Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392: 296–300.

    PubMed  CAS  Google Scholar 

  • Zornig, M. et al. (1995). Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV. Oncogene 10: 2397–2401.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wajant, H. (2006). CD95L/FasL and TRAIL in Tumour Surveillance and Cancer Therapy. In: Dalgleish, A.G., Haefner, B. (eds) The Link Between Inflammation and Cancer. Cancer Treatment and Research, vol 130. Springer, Boston, MA. https://doi.org/10.1007/0-387-26283-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-26283-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26282-6

  • Online ISBN: 978-0-387-26283-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics