Skip to main content

Regulation if NF-κB Transcriptional Activity

  • Chapter
The Link Between Inflammation and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 130))

Abstract

Nuclear factor κB (NF-κB) is regarded as a key regulator of inflammation; hence, several inflammatory diseases result from deregulation of NF-κB signaling. There is, however, also increasing evidence for a preponderant role of NF-κB in tumor development and progression. Constitutive activation of NF-κB activity by signaling defects, mutations or chromosomal rearrangements can be found in a wide variety of cancers. Additionally, a causal link between inflammation and cancer has been noted, which makes NF-κB an interesting target for development of both anti-inflammatory and anti-cancer therapeutics. Here, we review current knowledge of NF-κB signal transduction, focusing on the regulation of its transcriptional activity by post-translational modification of the NF-κB subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  • Adam, E. et al. (2003). Potentiation of tumor necrosis factor-induced NF-κB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of IκBα. Mol. Cell Biol. 23: 6200–6209.

    Article  PubMed  CAS  Google Scholar 

  • Anrather, J. et al. (1999). Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21ras and protein kinase Cζ, in primary endothelial cells. J. Biol Chem. 274: 13594–13603.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, B.P. et al. (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21: 7065–7077.

    Article  PubMed  CAS  Google Scholar 

  • Bird, T.A. et al. (1997). Activation of nuclear transcription factor NF-κB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol Chem. 272: 32606–32612.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, D.K. et al. (2004). NF-κB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc. Natl Acad. Sci. USA. 101: 10137–10142.

    Article  PubMed  CAS  Google Scholar 

  • Bohuslav, J. et al. (2004). p53 Induces NF-κB activation by an IκB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase I. J. Biol. Chem. 279: 26115–26125.

    Article  PubMed  CAS  Google Scholar 

  • Buss, H. et al. (2004a). Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J. Biol. Chem. 279: 49571–49574.

    Article  PubMed  CAS  Google Scholar 

  • Buss, H. et al. (2004b). Constitutive and interleukin-1 inducible phosphorylation of p65 NFκB at serine 536 is mediated by multiple kinases including IKKα, IKKβ, IKKε, TBK1, and an unknown kinase and couples p65 to TAFII31-mediated interleukin-8 transcription. J. Biol. Chem. 279: 55633–55643.

    Article  PubMed  CAS  Google Scholar 

  • Chantome, A. et al. (2004). Casein kinase II-mediated phosphorylation of NF-κB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J. Biol. Chem. 279: 23953–23960.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. et al. (2001). Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293: 1653–1657.

    Article  CAS  Google Scholar 

  • Chen, L.F. and Greene, W.C. (2004). Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5: 392–401.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.F. et al. (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21: 6539–6548.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, P. et al. (2000). Signaling to chromatin through histone modifications. Cell 103: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • De Ketelaere, A. et al. (2004). Involvement of GSK-3β in TWEAK-mediated NF-κB activation. FEBS Lett. 566: 60–64.

    Article  PubMed  Google Scholar 

  • Deng, W.G. et al. (2003). Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-α-induced cyclooxygenase-2 promoter activation. J. Biol. Chem. 278: 4770–4777.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J.M. et al. (1998). SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 2: 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Duran, A. et al. (2003). Essential role of RelA Ser311 phosphorylation by ζPKC in NF-κB transcriptional activation. EMBO J. 22: 3910–3918.

    Article  PubMed  CAS  Google Scholar 

  • Farrow, B. et al. (2004). Inflammatory mechanisms contributing to pancreatic cancer development. Ann. Surg. 239: 763–769: discussion 769–771.

    Article  PubMed  Google Scholar 

  • Fognani, C. et al. (2000). cRel-TD kinase: a serine/threonine kinase binding in vivo and in vitro c-Rel and phosphorylating its transactivation domain. Oncogene 19: 2224–2232.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, F. et al. (2003). Identification of NAP1, a regulatory subunit of IκB kinase-related kinases that potentiates NF-κB signaling. Mol. Cell. Biol. 23: 7780–7793.

    Article  PubMed  CAS  Google Scholar 

  • Furia, B. et al. (2002). Enhancement of NF-κB acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. 277: 4973–4980.

    Article  PubMed  CAS  Google Scholar 

  • Greten, F.R. et al. (2004). IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Haefner, B. (2002). NF-κB: arresting a major culprit in cancer. Drug Discov. Today 7: 653–663.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R.T. (2004). Modifying NEMO. Nat. Cell Biol. 6: 89–91.

    Article  PubMed  CAS  Google Scholar 

  • Hiscott, J. et al. (2001) Hostile takeovers: viral appropriation of the NF-κB pathway. J. Clin. Invest. 107: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Hoeflich, K.P. et al. (2000). Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 406: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.T. et al. (2003). Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115: 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Israel A. (2000). The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K. et al. (2000). Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 20: 6891–6903.

    Article  PubMed  CAS  Google Scholar 

  • Jang, M.K. et al. (2001). Ca2+/calmodulin-dependent protein kinase IV stimulates nuclear factor-κB transactivation via phosphorylation of the p65 subunit. J. Biol. Chem. 276: 20005–20010.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, T. and Allis, C.D. (2001). Translating the histone code. Science 293: 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X. et al. (2003). The NF-κB activation in lymphotoxin β receptor signaling depends on the phosphorylation of p65 at serine 536. J. Biol. Chem. 278: 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S. (2004). Protein modification by SUMO. Annu. Rev. Biochem. 73: 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. et al. (2002). NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. et al. (2004). The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Kiernan, R. et al. (2003). Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278: 2758–2766.

    Article  PubMed  CAS  Google Scholar 

  • Leitges, M. et al. (2001). Targeted Disruption of the ζPKC Gene Results in the Impairment of the NF-κB Pathway. Mol. Cell. 8: 771–780.

    Article  PubMed  CAS  Google Scholar 

  • Lu, K.P. (2003). Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Lu, K.P. (2004). Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem. Sci. 29: 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Madrid, L.V. et al. (2001). Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogenactivated protein kinase p38. J. Biol. Chem. 276: 18934–18940.

    Article  PubMed  CAS  Google Scholar 

  • Madrid, L.V. et al. (2000). Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB. Mol. Cell. Biol. 20: 1626–1638.

    Article  PubMed  CAS  Google Scholar 

  • Maier, H.J. et al. (2003). Critical Role of RelB Serine 368 for Dimerization and pl00 Stabilization. J. Biol Chem. 278: 39242–39250.

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld, R. et al. (2001). Signal-specific and phosphorylation-dependent RelB degradation: a potential mechanism of NF-κB control. Oncogene 20: 8142–8147.

    Article  PubMed  CAS  Google Scholar 

  • Mattioli, I. et al. (2004a). Transient and selective NF-κB p65 serine 536 phosphorylation induced by T cell costimulation is mediated by IκB kinase β and controls the kinetics of p65 nuclear import. J. Immunol. 172: 6336–6344.

    PubMed  CAS  Google Scholar 

  • Mattioli, I. et al. (2004b). Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood 104: 3302–3304.

    Article  PubMed  CAS  Google Scholar 

  • Quivy, V. and Van Lint, C. (2004). Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation. Biochem. Pharmacol. 68: 1221–1229.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, S. et al. (2003). p53-and Mdm2-independent repression of NF-κB transactivation by the ARF tumor suppressor. Mol Cell 12: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Ryo, A. et al. (2003). Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12: 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, H. et al. (1999). IKB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274: 30353–30356.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, H. et al. (2003). Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J. Biol Chem. 278: 36916–36923.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, M.L. et al. (2001). IκB-independent control of NF-κB activity by modulatory phosphorylations. Trends Biochem. Sci. 26: 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, M.L. et al. (1995). Interaction of the COOH-terminal transactivation domain of p65 NF-κB with TATA-binding protein, transcription factor IIB, and coactivators. J. Biol. Chem. 270: 7219–7226.

    Article  PubMed  CAS  Google Scholar 

  • Schwabe, R.F. and Brenner, D.A. (2002). Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes. Am. J. Physiol Gastrointest. Liver Physiol. 283: G204–211.

    PubMed  CAS  Google Scholar 

  • Sizemore, N. et al. (2002). Distinct roles of the IκB kinase α and β subunits in liberating NFκB from IκB and in phosphorylating the p65 subunit of NF-κB. J. Biol. Chem. 277: 3863–3869.

    Article  PubMed  CAS  Google Scholar 

  • Sizemore, N. et al. (1999). Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-κB p65/RelA subunit. Mol. Cell. Biol. 19: 4798–4805.

    PubMed  CAS  Google Scholar 

  • Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Surh, Y.J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768–780.

    Article  PubMed  CAS  Google Scholar 

  • Takada, Y. et al. (2003). Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65: evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase. J. Biol. Chem. 278: 24233–24241.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen, L. et al. (2002). Regulation of the transcriptional activity of the nuclear factor-κB p65 subunit. Biochem. Pharmacol. 64: 963–970.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen, L. et al. (2003). Transcriptional activation of the NF-κB subunit by mitogen-and stress-activated protein kinase-1 (MSK1). EMBO J. 22: 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. and Baldwin, A.S., Jr. (1998). Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273: 29411–29416.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. et al. (2000). Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275: 32592–32597.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe, A.P. and Hayes, J.J. (1999). Chromatin disruption and modification. Nucleic Acids Res. 27: 711–720.

    Article  PubMed  CAS  Google Scholar 

  • Yang, F. et al. (2003). IKKβ plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J. Immunol. 170: 5630–5635.

    PubMed  CAS  Google Scholar 

  • Yang, J. et al. (2001). Protein phosphatase 2A interacts with and directly dephosphorylates RelA. J. Biol. Chem. 276: 47828–47833.

    PubMed  CAS  Google Scholar 

  • Yeh, P.Y. (2004). Suppression of MEK/ERK signaling pathway enhances cisplatin-induced NF-κB activation by protein phosphatase 4-mediated NF-κB p65 Thr dephosphorylation. J. Biol. Chem. 279: 26143–26148.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, F. et al. (2004). Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23: 2369–2380.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H. et al. (2002). The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9: 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H. et al. (1997). The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89: 413–424.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H. et al. (1998). Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1: 661–671.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Vermeulen, L., Vanden Berghe, W., Haegeman, G. (2006). Regulation if NF-κB Transcriptional Activity. In: Dalgleish, A.G., Haefner, B. (eds) The Link Between Inflammation and Cancer. Cancer Treatment and Research, vol 130. Springer, Boston, MA. https://doi.org/10.1007/0-387-26283-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-26283-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26282-6

  • Online ISBN: 978-0-387-26283-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics