Skip to main content

Interactions between HIF-1 and Jab1: Balancing Apoptosis and Adaptation

Outline of a working hypothesis

  • Conference paper
Oxygen Transport to Tissue XXVI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

When cells experience hypoxia, they either die by apoptosis or adapt to the hypoxic conditions by a series of compensatory mechanisms. Hypoxia inducible factor-1 (HIF-1) is a transcription factor involved in both processes, but the exact mechanisms regulating whether the cells survive (adapt) or perish by apoptosis are largely unknown.

We hypothesize that the balancing between apoptosis and adaptation is governed by a triangular feedback system involving the α-subunit of HIF-1, p53, and jun activating binding protein 1 (Jab1). Jab1 and p53 bind competitively to the same domain on HIF-1α resulting in either stabilization or degradation of HIF-1α, respectively. Moreover, p53 is stabilized by binding to HIF-1α, whereas its interaction with Jab1 targets p53 for degradation. Thus as a consequence we propose that the ratio between p53 and Jab1 determine whether a hypoxic induction of HIF-1 results in apoptosis or adaptation, with Jab1 as the factor promoting adaptation. On this background we consider Jab1 an interesting molecular target for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ivan, and W. G. Kaelin, Jr., The von Hippel-Lindau tumor suppressor protein, Curr. Opin. Genet. Dev. 11, 27–34 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. K. Kondo and W. G. Kaelin, Jr., The von Hippel-Lindau tumor suppressor gene, Exp. Cell Res. 264, 117–125 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. J. M. Brown, Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies, Mol. Med. Today 6, 157–162 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. G. L. Semenza, HIF-1 and mechanisms of hypoxia sensing, Curr. Opin. Cell Biol. 13, 167–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. G. L. Semenza, Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease, Pediatr. Res. 49, 614–617 (2001).

    PubMed  CAS  Google Scholar 

  6. G. L. Semenza, HIF-1: mediator of physiological and pathophysiological responses to hypoxia, J. Appl. Physiol 88, 1474–1480 (2000).

    PubMed  CAS  Google Scholar 

  7. P. Carmeliet, Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, E. Keshert, and E. Keshet, Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis, Nature 394, 485–490 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. R. K. Bruick, Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia, Proc. Natl. Acad. Sci. USA 97, 9082–9087 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. W. G. An, M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny, and L. M. Neckers, Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha, Nature 392, 405–408 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. H. Suzuki, A. Tomida, and T. Tsuruo, Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia, Oncogene 20, 5779–5788 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. D. Chen, M. Li, J. Luo, and W. Gu, Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function, J. Biol. Chem. 278, 13595–13598 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. S. Salceda, I. Beck, V. Srinivas, and J. Caro, Complex role of protein phosphorylation in gene activation by hypoxia, Kidney Int. 51, 556–559 (1997).

    PubMed  CAS  Google Scholar 

  13. P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, P. H. Maxwell, C. W. Pugh, and P. J. Ratcliffe, Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science 292, 468–472 (2001).

    PubMed  CAS  Google Scholar 

  14. E. Minet, T. Arnould, G. Michel, I. Roland, D. Mottet, M. Raes, J. Remacle, and C. Michiels, ERK activation upon hypoxia: involvement in HIF-1 activation, FEBS Lett. 468, 53–58 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. D. E. Richard, E. Berra, E. Gothie, D. Roux, and J. Pouyssegur, p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1 alpha) and enhance the transcriptional activity of HIF-1, J. Biol. Chem. 274, 32631–32637 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. D. Lando, D. J. Peet, D. A. Whelan, J. J. Gorman, and M. L. Whitelaw, Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch, Science 295, 858–861 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. M. K. Bae, M. Y. Ahn, J. W. Jeong, M. H. Bae, Y. M. Lee, S. K. Bae, J. W. Park, K. R. Kim, and K. W. Kim, Jab1 interacts directly with HIF-1alpha and regulates its stability, J. Biol. Chem. 277, 9–12 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. R. Ravi, B. Mookerjee, Z. M. Bhujwalla, C. H. Sutter, D. Artemov, Q. Zeng, L. E. Dillehay, A. Madan, G. L. Semenza, and A. Bedi, Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha, Genes Dev. 14, 34–44 (2000).

    PubMed  CAS  Google Scholar 

  19. M. V. Blagosklonny, W. G. An, L. Y. Romanova, J. Trepel, T. Fojo, and L. Neckers, p53 inhibits hypoxia-inducible factor-stimulated transcription, J. Biol. Chem. 273, 11995–11998 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. L. O. Hansson, A. Friedler, S. Freund, S. Rudiger, and A. R. Fersht, Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53, Proc. Natl. Acad. Sci. USA 99, 10305–10309 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. F. X. Claret, M. Hibi, S. Dhut, T. Toda, and M. Karin, A new group of conserved coactivators that increase the specificity of AP-1 transcription factors, Nature 383, 453–457 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. S. F. Kwok, R. Solano, T. Tsuge, D. A. Chamovitz, J. R. Ecker, M. Matsui, and X. W. Deng, Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations, Plant Cell 10, 1779–1790 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. M. H. Glickman, D. M. Rubin, O. Coux, I. Wefes, G. Pfeifer, Z. Cjeka, W. Baumeister, V. A. Fried, and D. Finley, A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3, Cell 94, 615–623 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. D. Bech-Otschir, R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, and W. Dubiel, COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system, EMBO J. 20, 1630–1639 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. M. Seeger, R. Kraft, K. Ferrell, D. Bech-Otschir, R. Dumdey, R. Schade, C. Gordon, M. Naumann, and W. Dubiel, A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits, FASEB J. 12, 469–478 (1998).

    PubMed  CAS  Google Scholar 

  26. K. Tomoda, Y. Kubota, and J. Kato, Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1, Nature 398, 160–165 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. K. Tomoda, Y. Kubota, Y. Arata, S. Mori, M. Maeda, T. Tanaka, M. Yoshida, N. Yoneda-Kato, and J. Y. Kato, The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex, J. Biol. Chem. 277, 2302–2310 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. L. B. Gardner, Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza, and C. V. Dang, Hypoxia inhibits G1/S transition through regulation of p27 expression, J. Biol. Chem. 276, 7919–7926 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. N. Goda, H. E. Ryan, B. Khadivi, W. McNulty, R. C. Rickert, and R. S. Johnson, Hypoxia-inducible factor 1 alpha is essential for cell cycle arrest during hypoxia, Mol. Cell Biol. 23, 359–369 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. R. M. Gemmill, L. T. Bemis, J. P. Lee, M. A. Sozen, A. Baron, C. Zeng, P. F. Erickson, J. E. Hooper, and H. A. Drabkin, The TRC8 hereditary kidney cancer gene suppresses growth and functions with VHL in a common pathway, Oncogene 21, 3507–3516 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. T. G. Graeber, J. F. Peterson, M. Tsai, K. Monica, A. J. Fornace, Jr., and A. J. Giaccia, Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status, Mol. Cell Biol. 14, 6264–6277 (1994).

    PubMed  CAS  Google Scholar 

  32. T. G. Graeber, C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe, and A. J. Giaccia, Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours, Nature 379, 88–91 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. E. M. Hammond, N. C. Denko, M. J. Dorie, R. T. Abraham, and A. J. Giaccia, Hypoxia links ATR and p53 through replication arrest, Mol. Cell Biol. 22, 1834–1843 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. E. M. Hammond, M. J. Dorie, and A. J. Giaccia, ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to re-oxygenation, J. Biol. Chem. 278(14), 12207–12213 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. M. Achison and T. R. Hupp, Hypoxia attenuates the p53 response to cellular damage, Oncogene 22, 3431–3440 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. R.H. Wenger, G. Camenisch, I. Desbaillets, D. Chilov, and M. Gassmann, Up-regulation of hypoxia-inducible factor-1alpha is not sufficient for hypoxic/anoxic p53 induction, Cancer Res. 58, 5678–5680(1998).

    PubMed  CAS  Google Scholar 

  37. K. L. Talks, H. Turley, K. C. Gatter, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe, and A. L. Harris, The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages, Am. J. Pathol. 157, 411–421 (2000).

    PubMed  CAS  Google Scholar 

  38. K. L. Sondergaard, D. A. Hilton, M. Penney, M. Ollerenshaw, and A. G. Demaine, Expression of hypoxia-inducible factor 1alpha in tumours of patients with glioblastoma, Neuropathol. Appl. Neurobiol. 28, 210–217 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. H. Zhong, A. M. De Marzo, E. Laughner, M. Lim, D. A. Hilton, D. Zagzag, P. Buechler, W. B. Isaacs, G. L. Semenza, and J. W. Simons, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases, Cancer Res. 59, 5830–5835 (1999).

    PubMed  CAS  Google Scholar 

  40. G. L. Semenza, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression, Crit Rev. Biochem. Mol. Biol. 35, 71–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. P. Birner, M. Schindl, A. Obermair, C. Plank, G. Breitenecker, and G. Oberhuber, Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer, Cancer Res. 60, 4693–4696 (2000).

    PubMed  CAS  Google Scholar 

  42. D. M. Aebersold, P. Burri, K. T. Beer, J. Laissue, V. Djonov, R. H. Greiner, and G. L. Semenza, Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer, Cancer Res. 61, 2911–2916 (2001).

    PubMed  CAS  Google Scholar 

  43. M. I. Koukourakis, A. Giatromanolaki, E. Sivridis, C. Simopoulos, H. Turley, K. Talks, K. C. Gatter, and A. L. Harris, Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer, Int. J. Radiat. Oncol. Biol. Phys. 53, 1192–1202 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. A. Unruh, A. Ressel, H. G. Mohamed, R. S. Johnson, R. Nadrowitz, E. Richter, D. M. Katschinski, and R. H. Wenger, The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy, Oncogene 12, 3213–3220 (2003).

    Article  Google Scholar 

  45. P. Birner, B. Gatterbauer, G. Oberhuber, M. Schindl, K. Rossler, A. Prodinger, H. Budka, and J. A. Hainfellner, Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis, Cancer 92, 165–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. L. Sui, Y. Dong, M. Ohno, Y. Watanabe, K. Sugimoto, Y. Tai, and M. Tokuda, Jab1 expression is associated with inverse expression of p27(kip1) and poor prognosis in epithelial ovarian tumors, Clin. Cancer Res. 7, 4130–4135 (2001).

    PubMed  CAS  Google Scholar 

  47. M.A. Kouvaraki, G. Z. Rassidakis, L. Tian, R. Kumar, C. Kittas, and F. X. Claret, Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27(Kip1), Cancer Res. 63, 2977–2981 (2003).

    PubMed  CAS  Google Scholar 

  48. A. J. Levine, p53, the cellular gatekeeper for growth and division, Cell 88, 323–331 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. J. L. Yu, J. W. Rak, B. L. Coomber, D. J. Hicklin, and R. S. Kerbel, Effect of p53 status on tumor response to antiangiogenic therapy, Science 295, 1526–1528 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Larsen, M., Høg, A., Lund, E.L., Kristjansen, P.E.G. (2005). Interactions between HIF-1 and Jab1: Balancing Apoptosis and Adaptation. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_28

Download citation

Publish with us

Policies and ethics