Skip to main content

Closing the Loop: Stimulation Feedback Systems for Embodied MEA Cultures

  • Chapter
Advances in Network Electrophysiology

9.7 Conclusion

By combining MEA electrophysiology with long-term time-lapse imaging, it is possible to make correlations between changes in network function and changes in neuronal morphology. By re-embodying dissociated cultured networks, network function can be mapped onto behavior, and in vitro research can now make use of a new kind of behavioral studies that include detailed (submicron) imaging not possible in vivo. By closing the sensory-motor loop around MEA cultures, they are more likely to shed light on the mechanisms of learning, memory, and information processing in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananthaswami, A. (2002). Mind over metal. New Sci. Feb 23: 26–29.

    Google Scholar 

  • Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., and Potter, S.M. (2004). Removing some ‘A’ from AI: Embodied cultured networks. In: Iida, Pfeifer, R., Steels, L., and Kuniyoshi, Y. (Eds.) pp. 130–45. Springer-Verlag, New York.

    Google Scholar 

  • Banker, G. and Goslin, K. (1998). Culturing Nerve Cells, 2nd Edition. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ben-Ari, Y. (2001). Developing networks play a similar melody. Trends Neurosci. 24: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Bi, G.Q. and Poo, M.M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18: 10464–10472.

    PubMed  CAS  Google Scholar 

  • Bohanon, T., Elender, G., Knoll, W., Koberle, P., Lee, J.S., Offenhausser, A., Ringsdorf, H., Sackmann, E., Simon, J., Tovar, G., and Winnik, F. M. (1996). Neural cell pattern formation on glass and oxidized silicon surfaces modified with poly(N-isopropylacrylamide). J. Biomat. Sci. Polymer Edition 8: 19–39.

    CAS  Google Scholar 

  • Branch, D.W., Corey, J.M., Weyhenmeyer, J.A., Brewer, G. J., and Wheeler, B.C. (1998). Microstamp patterns of biomolecules for high-resolution neuronal networks. Med. Biol. Eng. Comput. 36: 135–141.

    PubMed  CAS  Google Scholar 

  • Brewer, G.J. and Cotman, C.W. (1989). Survival and growth of hippocampal-neurons in defined medium at low-density—Advantages of a sandwich culture technique or low oxygen. Brain Res. 494: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, G.J. and Price, P.J. (1996). Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. Neuroreport 7: 1509–1512.

    PubMed  CAS  Google Scholar 

  • Buitenweg, J.R., Rutten, W.L.C., and Marani, E. (2002). Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact. IEEE Trans. Biomed. Eng. 49: 1591–1599.

    Article  PubMed  Google Scholar 

  • Burgess, J.W. and Coss, R.G. (1983). Rapid effect of biologically relevant stimulation on tectal neurons—changes in dendritic spine morphology after 9 minutes are retained for 24 hours. Brain Res. 266: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., and Tsien, R.Y. (2002). A monomeric red fluorescent protein. Proc. Nat. Acad. Sci. U. S. A. 99: 7877–7882.

    Article  CAS  Google Scholar 

  • Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1: 193–208.

    Article  CAS  Google Scholar 

  • Chapin, J.K., Moxon, K.A., Markowitz, R.S., and Nicolelis, M.A.L. (1999). Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2: 664–670.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A. (1997). Being There: Putting Brain, Body, and the World Together Again. MIT Press, Cambridge, MA.

    Google Scholar 

  • Connolly, P., Clark, P., Curtis, A.S., Dow, J.A., and Wilkinson, C.D. (1990). An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, M.O., Davies, C.H., Buhl, E.H., Kopell, N., and Whittington, M.A. (2003). Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J. Neurosci. 23: 9761–9769.

    PubMed  CAS  Google Scholar 

  • Darbon, P., Scicluna, L., Tscherter, A., and Streit, J. (2002). Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks. Euro. J. Neurosci. 15: 671–683.

    Article  Google Scholar 

  • DeMarse, T.B., Wagenaar, D.A., Blau, A.W., and Potter, S.M. (2001). The neurally controlled animat: Biological brains acting with simulated bodies. Auton. Robots 11: 305–310.

    Article  Google Scholar 

  • Denk, W., Delaney, K.R., Gelperin, A., Kleinfeld, D., Strowbridge, D.W., Tank, D.W., and Yuste, R. (1994). Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Meth. 54: 151–162.

    Article  CAS  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W. W. (1990). 2-photon laser scanning fluorescence microscopy. Science 248: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Feng, G.P., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W., and Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Fromherz, P. and Stett, A. (1995). Silicon-neuron junction—Capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 75: 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  • Furuta, T., Wang, S.S.H., Dantzker, J.L., Dore, T.M., Bybee, W.J., Callaway, E.M., Denk, W., and Tsien, R.Y. (1999). Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc. Nat. Acad. Sci. U. S. A. 96: 1193–1200.

    Article  CAS  Google Scholar 

  • Gabbiani, F., Krapp, H.G., and Laurent, G. (1999). Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19: 1122–1141.

    PubMed  CAS  Google Scholar 

  • Gan, W.B., Kwon, E., Feng, G.P., Sanes, J.R., and Lichtman, J.W. (2003). Synaptic dynamism measured over minutes to months: Age-dependent decline in an autonomic ganglion. Nature Neurosci. 6: 956–960.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G.W. and Kowalski, J.M. (1999). Origins of activity patterns in self-organizing neuronal networks in vitro. J. Intell. Mater. Syst. Struct. 10: 558–564.

    Article  Google Scholar 

  • Gross, G.W., Rhoades, B.K., Reust, D.L., and Schwalm, F.U. (1993). Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Meth. 50: 131–143.

    Article  CAS  Google Scholar 

  • Gross, G.W., Wen, W.Y., and Lin, J.W. (1985). Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Meth. 15: 243–252.

    Article  CAS  Google Scholar 

  • Grumet, A.E., Wyatt, J.L., and Rizzo, J.F. (2000). Multi-electrode stimulation and recording in the isolated retina. J. Neurosci. Meth. 101: 31–42.

    Article  CAS  Google Scholar 

  • Hadjantonakis, A.K., Dickinson, M.E., Fraser, S.E., and Papaioannou, V.E. (2003). Technicolour transgenics: Imaging tools for functional genomics in the mouse. Nature Rev. Genet. 4: 613–625.

    Article  CAS  Google Scholar 

  • Hartmann, M.J. and Bower, J.M. (2001). Tactile responses in the granule cell layer of cerebellar folium Crus IIa of freely behaving rats. J. Neurosci. 21: 3549–3563.

    PubMed  CAS  Google Scholar 

  • Heck, D. (1995). Investigating dynamic aspects of brain-function in slice preparations—spatiotemporal stimulus patterns generated with an easy-to-build multielectrode array. J. Neurosci. Meth. 58: 81–87.

    Article  CAS  Google Scholar 

  • Heim, R. and Tsien, R.Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Helmchen, F., Fee, M.S., Tank, D.W., and Denk, W. (2001). Aminiature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals. Neuron 31: 903–912.

    Article  PubMed  CAS  Google Scholar 

  • Heuschkel, M.O., Guerin, l., Buisson, B., Bertrand, D., and Renaud, P. (1998). Buried microchannels in photopolymer for delivering of solutions to neurons in a network. Sens. Actuat. B-Chem. 48: 356–361.

    Article  Google Scholar 

  • Holland, O. and McFarland, D. (2001). Artificial Ethology. Oxford University Press, Oxford.

    Google Scholar 

  • Huxley, A. (2002). From overshoot to voltage clamp. Trends Neurosci. 25: 553–558.

    Article  PubMed  CAS  Google Scholar 

  • Jimbo, Y. and Kawana, A. (1992). Electrical stimulation and recording from cultured neurons using a planar electrode array. Bioelectrochem. Bioenerget. 29: 193–204.

    Article  Google Scholar 

  • Jimbo, Y., Kasai, N., Torimitsu, K., Tateno, T., and Robinson, H.P.C. (2003). A system for MEA-based multisite stimulation. IEEE Trans. Biomed. Eng. 50: 241–248.

    Article  PubMed  Google Scholar 

  • Jimbo, Y., Robinson, H.P.C., and Kawana, A. (1998). Strengthening of synchronized activity by tetanic stimulation in cortical cultures: Application of planar electrode arrays. IEEE Trans. Biomed. Eng. 45: 1297–1304.

    Article  PubMed  CAS  Google Scholar 

  • Kositsky, M., Karniel, A., Alford, S., Fleming, K.M., and Mussa-Valdi, F.A. (2003). Dynamical dimension of a hybrid neurorobotic system. Trans. Neural Syst. Rehab. Eng. 11: 155–159.

    Article  Google Scholar 

  • Kullmann, P.H.M., Wheeler, D.W., Beacom, J., and Horn, J.P. (2004). Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J. Neurophysiol. 91: 542–554.

    Article  PubMed  Google Scholar 

  • Latham, P.E., Richmond, B.J., Nirenberg, S., and Nelson, P.G. (2000). Intrinsic dynamics in neuronal networks. II. Experiment. J. Neurophysiol. 83: 828–835.

    PubMed  CAS  Google Scholar 

  • Lelong, I.H., Petegnief, V., and Rebel, G. (1992). Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. J. Neurosci. Res. 32: 562–568.

    Article  PubMed  CAS  Google Scholar 

  • Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P., and Webb, W.W. (2004). In vivo multiphoton microscopy of deep brain tissue. J. Neurophys. 91: 1908–1912.

    Article  Google Scholar 

  • Liu, G and Tsien, R.W. (1995). Synaptic transmission at single visualized hippocampal boutons. Neuropharmacol. 34: 1407–1421.

    Article  CAS  Google Scholar 

  • Lucas, J.H., Czisny, L.E., and Gross, G.W. (1986). Adhesion of cultured mammalian central nervous system neurons to flame-modified hydrophobic surfaces. In Vitro Cell Dev. Biol. 22: 37–43.

    PubMed  CAS  Google Scholar 

  • Lukashin, A.V., Amirikian, B.R., and Georgopoulos, A.P. (1996). A simulated actuator driven by motor cortical signals. Neuroreport 7: 2597–2601.

    PubMed  CAS  Google Scholar 

  • Maeda, E., Robinson, H.P., and Kawana, C.A. (1995). The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical-neurons. J. Neurosci. 15: 6834–6845.

    PubMed  CAS  Google Scholar 

  • Maher, M.P., Pine, J., Wright, J., and Tai, Y.C. (1999). The neurochip: A new multielectrode device for stimulating and recording from cultured neurons. J. Neurosci. Meth. 87: 45–56.

    Article  CAS  Google Scholar 

  • Majewska, A. and Sur, M. (2003). Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation. Proc. Nat. Acad. Sci. U. S. A. 100: 16024–16029.

    Article  CAS  Google Scholar 

  • Martinoia, S., Sanguineti, V., Cozzi, L., Berdondini, L., van Pelt, J., Tomas, J., Le Masson, G., and Davide, F. (2004). Towards an embodied in vitro electrophysiology: The Neuro-BIT Project. Neurocomput. 58–60: 1065–1072.

    Article  Google Scholar 

  • Merz, M. and Fromherz, P. (2002). Polyester microstructures for topographical control of outgrowth and synapse formation of snail neurons. Adv. Mater. 14: 141ff.

    Google Scholar 

  • Meyer, J.-A. and Guillot, A. (1994). From SAB90 to SAB94: Four years of animat research. In: Cliff, D.H., Meyer, P., Wilson, J.-A., Cambridge, S.W., eds., From Animals to Animats 3. Proceedings of the Third International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, pp. 2–11.

    Google Scholar 

  • Misgeld, U., Zeilhofer, H.U., and Swandulla, D. (1998). Synaptic modulation of oscillatory activity of hypothalamic neuronal networks in vitro. Cell. Molec. Neurobiol. 18: 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C.G. (1973). Psychology: An Introduction. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Muller, T.H., Misgeld, U., and Swandulla, D. (1992). Ionic currents in cultured rat hypothalamic neurones. J. Physiol. 450: 341–62.

    PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A. and Miller, L.E. (2003). Brain-machine interfaces: Computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 26: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Nadasdy, Z. (2000). Spike sequences and their consequences. J. Physiol.-Paris 94: 505–524.

    Article  PubMed  CAS  Google Scholar 

  • Nam, Y., Khatami, D., Wheeler, B.C., and Brewer, G.J. (2003). Electrical stimulation of patterned neuronal networks in vitro. IEEE Eng.Med. Biol., Cancun, Mexico.

    Google Scholar 

  • Nolfi, S. and Parisi, D. (1999). Exploiting the power of sensory-motor coordination. Advances in Artificial Life, Proceedings. 1674: 173–182.

    Google Scholar 

  • Novak, J.L. and Wheeler, B.C. (1988). Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array. J. Neurosci. Meth. 23: 149–59.

    Article  CAS  Google Scholar 

  • Nowotny, T., Zhigulin, V.P., Selverston, A.I., Abarbanel, H.D.I., and Rabinovich, M.I. (2003). Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J. Neurosci. 23: 9776–9785.

    PubMed  CAS  Google Scholar 

  • Oka, H., Shimono, K., Ogawa, R., Sugihara, H., and Taketani, M. (1999). A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J. Neurosci. Meth. 93: 61–67.

    Article  CAS  Google Scholar 

  • Okita, C., Sato, M., and Schroeder, T. (2004). Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization. Biotechniques 36: 418ff.

    Google Scholar 

  • Pawley, J.B. (Ed.) (1995). Handbook of Biological Confocal Microscopy, 2nd Edition. Plenum Press, New York.

    Google Scholar 

  • Potter, S.M. (1996). Vital imaging: Two photons are better than one. Curr. Biol. 6: 1595–1598.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S.M. (2000). Two-photon microscopy for 4D imaging of living neurons. In: Yuste, R., Lanni, F., and Konnerth, A., eds., Imaging Neurons: A Laboratory Manual. CSHL Press, Cold Spring Harbor, NY, 20.1–20.16.

    Google Scholar 

  • Potter, S.M. and DeMarse, T.B. (2001). A new approach to neural cell culture for long-term studies. J. Neurosci. Meth. 110: 17–24.

    Article  CAS  Google Scholar 

  • Potter, S.M., Fraser, S.E., and Pine, J. (1996a). The greatly reduced photodamage of 2-photon microscopy enables extended 3-dimensional time-lapse imaging of living neurons. Scanning 18: 147.

    Google Scholar 

  • Potter, S.M., Fraser, S.E., and Pine, J. (1997). Animat in a petri dish: Cultured neural networks for studying neural computation. Proceedings of the 4th Joint Symposium on Neural Computation, UCSD: 167–174.

    Google Scholar 

  • Potter, S.M., Lukina, N., Longmuir, K.J., and Wu, Y. (2001a). Multi-site two-photon imaging of neurons on multi-electrode arrays. SPIE Proceedings 4262: 104–110.

    Google Scholar 

  • Potter, S.M., Pine, J., and Fraser, S.E. (1996b). Neural transplant staining with DiI and vital imaging by 2-photon laser-scanning microscopy. Scan. Microscopy Supplement 10: 189–199.

    CAS  Google Scholar 

  • Potter, S.M., Wang, C.M., Garrity, P.A., and Fraser, S.E. (1996c). Intravital imaging of green fluorescent protein using 2-photon laser-scanning microscopy. Gene 173: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Potter, S.M., Zheng, C., Koos, D.S., Feinstein, P., Fraser, S.E., and Mombaerts, P. (2001b). Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21: 9713–9723.

    PubMed  CAS  Google Scholar 

  • Raikov, I., Preyer, A., and Butera, R.J. (2004). MRCI: A flexible real-time dynamic clamp system for electrophysiology experiments. J. Neurosci. Meth. 132: 109–123.

    Article  Google Scholar 

  • Ramakers, G.J.A., Raadsheer, F.C., Corner, M.A., Ramaekers, F.C.S., and Vanleeuwen, F.W. (1991). Development of neurons and glial-cells in cerebral-cortex, cultured in the presence or absence of bioelectric activity—morphological observations. Euro. J. Neurosci. 3: 140–153.

    Article  Google Scholar 

  • Rambani, K., Booth, M.C., Brown, E.A., Raikov, I., and Potter, S.M. (2005). Custom-made multiphoton microscope for long-term imaging off neuronal cultures to explore structural and functional plasticity. Proc. SPIE 5700: 102–108.

    Google Scholar 

  • Regehr, W.G., Pine, J., Cohan, C.S., Mischke, M.D., and Tank, D.W. (1989). Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording. J. Neurosci. Meth. 30: 91–106.

    Article  CAS  Google Scholar 

  • Reger, B.D., Fleming, K.M., Sanguineti, V., Alford, S., and Mussa-Ivaldi, F.A. (2000). Connecting brains to robots: An artificial body for studying the computational properties of neural tissues. Artif. Life 6: 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Rollenhagen, A. and Bischof, H.J. (1994). Spine morphology of neurons in the avian forebrain is affected by rearing conditions. Behav. Neural Biol. 62: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Segev, R., Benveniste, M., Shapira, Y., and Ben-Jacob, E. (2003). Formation of electrically active clusterized neural networks. Phys. Rev. Lett. 90: Art. No. 168101.

    Google Scholar 

  • Shahaf, G. and Marom, S. (2001). Learning in networks of cortical neurons. J. Neurosci. 21: 8782–8788.

    PubMed  CAS  Google Scholar 

  • Sharp, A.A., Abbott, L.F., and Marder, E. (1992). Artificial electrical synapses in oscillatory networks. J. Neurophysiol. 67: 1691–1694.

    PubMed  CAS  Google Scholar 

  • Sharp, A.A., O’Neil, M.B., Abbott, L.F., and Marder, E. (1993). The dynamic clamp-Artificial conductances in biological neurons. Trends Neurosci. 16: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Shoham, S., Fellows, M.R., and Normann, R.A. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Meth. 127: 111–122.

    Article  Google Scholar 

  • Stenger, D.A., Pike, C.J., Hickman, J.J., and Cotman, C.W. (1993). Surface determinants of neuronal survival and growth on self-assembled monolayers in culture. Brain Res. 630: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Stoppini, l., Duport, S., and Correges, P. (1997). A new extracellular multirecording system for electrophysiological studies: Application to hippocampal organotypic cultures. J. Neurosci. Meth. 72: 23–33.

    Article  CAS  Google Scholar 

  • Studer, L., Csete, M., Lee, S. H., Kabbani, N., Walikonis, J., Wold, B., and McKay, R. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20: 7377–7383.

    PubMed  CAS  Google Scholar 

  • Suter, K.J. and Jaeger, D. (2004). Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells. Neurosci. 124: 305–317.

    Article  CAS  Google Scholar 

  • Taylor, D.M., Tillery, S.I.H., and Schwartz, A.B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science 296: 1829–1832.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, J., Chen, B.E., Knott, G.W., Feng, G.P., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420: 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, P.S., Nishimura, N., Yoder, E.J., Dolnick, E.M., White, G.A., and Kleinfeld, D. (2001). Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging. In: Frostig, R., ed., Methods for In Vivo Optical Imaging. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., and Barres, B.A. (2001). Control of synapse number by glia. Science 291: 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Wagenaar, D.A. and Potter, S.M. (2002). Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Meth. 120: 113–120.

    Article  Google Scholar 

  • Wagenaar, D.A. and Potter, S.M. (2004). A versatile all-channel stimulator for electrode arrays, with real-time control. J. Neural Eng. 1: 39–45.

    Article  PubMed  Google Scholar 

  • Wagenaar, D.A., Pine, J., and Potter, S.M. (2004). Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J. Neurosci. Meth. 138: 27–37.

    Article  Google Scholar 

  • Webb, B. (2002). Robots in invertebrate neuroscience. Nature 417: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, I.J., Hawrylak, N., and Greenough, W.T. (1995). Morphogenesis in memory formation-Synaptic and cellular mechanisms. Behav. Brain Res. 66: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.M., Zipfel, W.R., and Webb, W.W. (2001). Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5: 603–8.

    Article  PubMed  CAS  Google Scholar 

  • Wokosin, D.L., Amos, B.G., and White, J.G. (1998). Detection sensitivity enhancements for fluorescence imaging with multi-photon excitation microscopy. IEEE EMBS 20: 1707–1714.

    Google Scholar 

  • Zeck, G. and Fromherz, P. (2003). Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir 19: 1580–1585.

    Article  CAS  Google Scholar 

  • Ziegler, C. (2000). Information processing by natural neural networks: INPRO project IST-2000-26463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Potter, S.M., Wagenaar, D.A., DeMarse, T.B. (2006). Closing the Loop: Stimulation Feedback Systems for Embodied MEA Cultures. In: Taketani, M., Baudry, M. (eds) Advances in Network Electrophysiology. Springer, Boston, MA . https://doi.org/10.1007/0-387-25858-2_9

Download citation

Publish with us

Policies and ethics