Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

2.6. Conclusion

Though macropore growth on p-Si has appeared years after the corresponding studies started on n-Si, it seems to have reached a fair level of control and understanding. In general, crystallographic effects appear somewhat less marked for p-Si than for n-Si. However, strongly anisotropic pore growth may be obtained in suitable non-aqueous solvents. Although macropores, in p-Si as well as in n-Si, do not exhibit spontaneous long-range ordering, they can be grown as long-range ordered arrays if the growth is initiated by prepatterning. Especially, the possibility to grow structures down to lower and lower resistivities may lead one to obtain smaller structures from p-Si than from n-Si. This opens the way to a variety of applications, from the manufacturing of micromechanical devices to the engineering of photonic-crystal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Smith and S.D. Collins, J. Appl. Phys. 71, R1–R22 (1992).

    Article  CAS  Google Scholar 

  2. L.T. Canham (Ed.), Properties of Porous Silicon, EMIS Datareviews Series, INSPEC, IEE, London, 1997.

    Google Scholar 

  3. J.-N. Chazalviel, R.B. Wehrspohn, F. Ozanam and I. Solomon, MRS Symp. Proc. 452, 403–414 (1997).

    CAS  Google Scholar 

  4. R.B. Wehrspohn, F. Ozanam and J.-N. Chazalviel, J. Electrochem. Soc. 145, 2958–2961 (1998).

    CAS  Google Scholar 

  5. V. Lehmann and S. Rönnebeck, J. Electrochem. Soc. 146, 2968–2975 (1999).

    Article  CAS  Google Scholar 

  6. E.K. Propst and P.A. Kohl, J. Electrochem. Soc. 141, 1006–1013 (1994).

    CAS  Google Scholar 

  7. M.M. Rieger and P.A. Kohl, J. Electrochem. Soc. 142, 1490–1495 (1995).

    CAS  Google Scholar 

  8. E.A. Ponomarev and C. Levy-Clément, Electrochemical Solid-State Lett. 1, 42–45 (1998).

    Article  CAS  Google Scholar 

  9. E.A. Ponomarev and C. Levy-Clément, J. Porous Mater. 7, 51–56 (2000).

    Article  CAS  Google Scholar 

  10. S. Lust and C. Levy-Clément, Phys. Status Solidi a 182, 17–21 (2000).

    Article  CAS  Google Scholar 

  11. M. Christophersen, J. Carstensen, A. Feuerhake and H. Föll, Mater. Sci. Eng. B 69–70, 194–198 (2000).

    Article  Google Scholar 

  12. C. Jäger, B. Finkenberger, W. Jäger, M. Christophersen, J. Carstensen and H. Föll, Mater. Sci. Eng. B 69–70, 199–204 (2000).

    Article  Google Scholar 

  13. M. Christophersen, J. Carstensen and H. Föll, Phys. Status Solidi a 182, 103–107 (2000).

    Article  CAS  Google Scholar 

  14. M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger and H. Föll, J. Electrochem. Soc. 148, E267–E275 (2001).

    Article  CAS  Google Scholar 

  15. A. Belaïdi, M. Safi, F. Ozanam, J.-N. Chazalviel and O. Gorochov, J. Electrochem. Soc. 146, 2659–2664 (1999).

    Article  Google Scholar 

  16. J.-N. Chazalviel, M. Etman and F. Ozanam, J. Electroanal. Chem. 297, 533–540 (1991).

    Article  CAS  Google Scholar 

  17. M. Etman, M. Neumann-Spallart, F. Ozanam and J.-N. Chazalviel, J. Electroanal. Chem. 301, 259–265 (1991).

    Article  CAS  Google Scholar 

  18. V. Lehmann, J. Electrochem. Soc. 140, 2836–2843 (1993).

    CAS  Google Scholar 

  19. H.H. Hassan, J.L. Sculfort, M. Etman, F. Ozanam and J.-N. Chazalviel, J. Electroanal. Chem. 380, 55–61 (1995).

    Article  CAS  Google Scholar 

  20. S. Cattarin, I. Frateur, M. Musiani and B. Tribollet, J. Electrochem. Soc. 147, 3277–3282 (2000).

    Article  CAS  Google Scholar 

  21. J.E.A.M. Van den Meerakker and M.R.L. Mellier, J. Electrochem. Soc. 148, G166–G171 (2001).

    Article  Google Scholar 

  22. H. Harada, T. Shirahashi, M. Nakamura, T. Ohwada, Y. Sasaki, S. Okuda and A. Hosono, Jpn. J. Appl. Phys. 40, 4862–4863 (2001).

    Article  CAS  Google Scholar 

  23. J.-N. Chazalviel, F. Ozanam, N. Gabouze, S. Fellah and R.B. Wehrspohn, J. Electrochem. Soc. 149, C511–C520 (2002).

    Article  CAS  Google Scholar 

  24. V. Lehmann and H. Föll, J. Electrochem. Soc. 137, 653–659 (1990).

    CAS  Google Scholar 

  25. J. Carstensen, M. Christophersen and H. Föll, Mater. Sci. Eng. B 69–70, 23–28 (2000).

    Article  Google Scholar 

  26. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444–451 (1964).

    Article  Google Scholar 

  27. Y. Kang and J. Jorné, J. Electrochem. Soc. 140, 2258–2265 (1993).

    CAS  Google Scholar 

  28. A. Valance, Phys. Rev. B 52, 8323–8336 (1995).

    Article  CAS  Google Scholar 

  29. A. Valance, Phys. Rev. B 55, 9706–9715 (1997).

    Article  CAS  Google Scholar 

  30. R.B. Wehrspohn, F. Ozanam and J.-N. Chazalviel, J. Electrochem. Soc. 146, 3309–3314 (1999).

    Article  CAS  Google Scholar 

  31. J.-N. Chazalviel, R.B. Wehrspohn and F. Ozanam, Mater. Sci. Eng. B 69–70, 1–10 (2000).

    Article  Google Scholar 

  32. I. Ronga, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller and A. Halimaoui, J. Electrochem. Soc. 138, 1403–1407 (1991).

    CAS  Google Scholar 

  33. M. Christophersen, J. Carstensen and H. Föll, Phys. Status Solidi a 182, 45–50 (2000).

    Article  CAS  Google Scholar 

  34. V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856–858 (1991).

    Article  CAS  Google Scholar 

  35. R. Memming and G. Schwandt, Surf. Sci. 4, 109–124 (1966).

    Article  CAS  Google Scholar 

  36. E. Peiner and A. Schlachetzki, J. Electrochem. Soc. 139, 552–557 (1992).

    CAS  Google Scholar 

  37. K.J. Chao, S.C. Kao, C.M. Yang, M.S. Hseu and T.G. Tsai, Electrochem. Solid-State Lett. 3, 489–492 (2000).

    Article  CAS  Google Scholar 

  38. A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle and U. König, J. Electrochem. Soc. 149, G70–G76 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chazalviel, J.N., Ozanam, F. (2005). Macropores in p-Type Silicon. In: Ordered Porous Nanostructures and Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25193-6_2

Download citation

Publish with us

Policies and ethics