Skip to main content

ADAMTS-4 and ADAMTS-5

Aggrecanases

  • Chapter
The ADAM Family of Proteases

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 4))

Abstract

Osteoarthritis (OA) is characterized by articular cartilage erosion as a consequence of proteolytic cleavage of its two major functional macromolecules, type II collagen and aggrecan. Aggrecan degradation in OA and rheumatoid arthritis is attributed to cleavage at the Glu373-Ala374 bond by the aggrecanases. Two aggrecanases, purified from IL-1-stimulated cartilage explants, were identified as members of the a disintegrin and metalloproteinase with thrombospondin m p otifs (ADAMTS) family, ADAMTS-4 and ADAMTS-5, and work from a number of groups has begun to provide insight into the molecular basis for the role of these proteases in aggrecan catabolism. The expression of the aggrecanases can be up-regulated by a number of factors including cytokines, retinoic acid, and fragments of the extracellular matrix molecule, fibronectin. To date two endogenous inhibitors of aggrecanase activity have been identified, TIMP-3 and α2-macroglobulin. However, recent studies suggest that activity may also be controlled by the ability of aggrecanases to access the core protein of the heavily glycosylated aggrecan substrate. In addition, post-translational processing is another means of controlling activity of these proteases. Removal of the propeptide domain is required for activity as well as potentially C-terminal truncation. Knowledge continues to accumulate on the expression pattern of these proteases in different tissues and their potential role in normal physiological mechanisms and in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbaszade, I., Liu, R.Q., Yang, F., Rosenfeld, S.A., Ross, O.H., Link, J.R., Ellis, D.M., Tortorella, M.D., Pratta, M.A., Hollis, J.M., et al.. 1999. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 274:23443–23450.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, O., Christensen, P., Christensen, L., Jacobsen, C., Moestrup, S., Etzerodt, M., and Thogersen, H, 2000. Specific binding of alpha-macroglobulin to complement-type repeat CR4 of the low-density lipoprotein receptor-related protein. Biochemistry 39:10627–10633.

    Article  PubMed  CAS  Google Scholar 

  • Arner, E., Decicco, C., Cherney, R., and Tortorella, M, 1997. Cleavage of native cartilage aggrecan by neutrophil collagenase (MMP-8) is distinct from endogenous cleavage by aggrecanase. J. Biol. Chem. 272:9294–9299.

    Article  PubMed  CAS  Google Scholar 

  • Arner, E., Pratta, M., Decicco, C., Xue, C., Newton, R., Trzaskos, J., Magolda, R., and Tortorella, M. 1999a, Aggrecanase. A target for the design of inhibitors of cartilage degradation. Ann. N Y Acad. Sci. 878:92–107.

    Article  PubMed  CAS  Google Scholar 

  • Arner, E., Pratta, M., Trzaskos, J., Decicco, C., and Tortorella, M, 1999b. Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity. J. Biol. Chem. 274:6594–6601.

    Article  PubMed  CAS  Google Scholar 

  • Aschom, J.D., Tiller, S.E., Dickerson, K., Cravens, J.L., Argraves, W.S., and Strickland, D.K, 1990. The human 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of 2-macroglobulin. J. Cell Biol. 110:1041.

    Article  Google Scholar 

  • Buttner, F.H., Hughes, C.E., Margerie, D., Lichte, A., Tschesche, H., Caterson, B., and Bartnik, E, 1998. Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant agrecan substrate rAgg1mut at the ‘aggrecanase’and the MMP sites. Characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem. J. 333:159–165.

    PubMed  CAS  Google Scholar 

  • Cherney, R., Mo, R., Meyer, D., Wang, L., Yao, W., Wasserman, Z., Liu, R., Covington, M., Tortorella, M., Arner, E., et al.. 2003. Potent and selective aggrecanase inhibitors containing cyclic P1 substituents. Bioorg. Med. Chem. Lett. 13:1297–1300.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, X., Claudepierre, P., Groult, N., Zardi, L., and Hornebeck, W, 1996. Presence of ED-A containing fibronectin in human articular cartilage from patients with osteoarthritis and rheumatoid arthritis. J. Rheumatol. 23:1022–1030.

    PubMed  CAS  Google Scholar 

  • Chevalier, X., Groult, N., and Labat-Robert, J, 1992. Biosynthesis and distribution of fibronectin in normal and osteoarthritic human cartilage. Clin. Physiol. Biochem. 9:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Clemmensen, I., Holund, B., Johansen, N., and Andersen, R.B, 1982. Demonstration of fibronectin in human articular cartilage by an indirect immunoperoxidase technique. Histochemistry 76:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Colige, A., Sieron, A., Li, S., Schwarze, U., Petty, E., Wertelecki, W., Wilcox, W., Krakow, D., Cohn, D., Reardon, W., et al.. 1999. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am. J. Hum. Genet. 65:308–317.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, C., Rees, S., Little, C., Flannery, C., Hughes, C., Wilson, C., Dent, C., Otterness, I., Harwood, J.L., and Caterson, B. 2002. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum. 46:1544–1553.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, S.C., Vankemmelbeke, M.N., Buttle, D.J., Rosenberg, K., Heinegard, D., and Hollander, A.P, 2003. Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biology 22:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Flannery, C.R., Lark, M.W., and Sandy, J.D, 1992. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human cartilage. J. Biol. Chem. 267:1008–1014.

    PubMed  CAS  Google Scholar 

  • Flannery, C., Little, C., Hughes, C., Curtis, C., Caterson, B., and Jones, S, 2000. IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage. Matrix Biol. 19:549–553.

    Article  PubMed  CAS  Google Scholar 

  • Flannery, C., Zeng, W., Corcoran, C., Collins-Racie, L., Chockalingam, P., Hebert, T., Mackie, S., McDonagh, T., Crawford, T., Tomkinson, K., et al.. 2002. Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites. J. Biol. Chem. 277:42775–42780.

    Article  PubMed  CAS  Google Scholar 

  • Fosang, A.J., Last, K., Knauper, V., Murphy, G., and Neame, P.J, 1996. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett. 380:17–20.

    Article  PubMed  CAS  Google Scholar 

  • Fosang, A.J., Last, K., Knauper, V., Neame, P.J., Murphy, G., Hardingham, T.E., Tschesche, H., and Hamilton, J.A, 1993. Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobulair domain. Biochem. J. 295:273–276.

    PubMed  CAS  Google Scholar 

  • Fosang, A.J., Last, K., Neame, P.J., Murphy, G., Knauper, V., Tschesche, H., Hughes, C.E., Caterson, B., and Hardingham, T.E, 1994. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem. J. 304:347–351.

    PubMed  CAS  Google Scholar 

  • Fosang, A., Little, C., and Meeker, C, 2004. The role of MMPs and aggrecanases in proteolysis of aggrecan in normal growth and development: Studies using knock-in mice. XVIIth International Congress on Fibrinolysis and Proteolysis, Melbourne, Australia (abstract).

    Google Scholar 

  • Fosang, A.J., Neame, P.J., Last, K., Murphy, G., Hardingham, T.E., and Hamilton, J.A, 1992. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J. Biol. Chem. 267:19470–19474.

    PubMed  CAS  Google Scholar 

  • Gao, G., Plaas, A., Thompson, V., Jin, S., Zuo, F., and Sandy, JD, 2004. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J. Biol. Chem. 279:10042–10051.

    Article  PubMed  CAS  Google Scholar 

  • Georgiadis, K., Crawford, T., Tomkinson, K., Shakey, Q., Stahl, M., Morris, E., Collins-Racie, L., and LaVallie, E, 2002. ADAMTS-5 is autocatalytic at E753-G754 site in the spacer domain. Trans. Orthop. Res. Soc. 27:167.

    Google Scholar 

  • Hadler, N., Johnson, A., Spitznagel, J., and Quinet, R, 1981. Protease inhibitors in inflammatory synovial effusions. Ann. Rheum. Dis. 40:55–59.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, M., Seibert, K., Manning, P., Currie, M., Woerner, B., Edwards, D., Koki, A., and Tripp, C, 2002. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 46:1789–1803.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, G., Aoki, T., Nakamura, H., Tanzawa, K., and Okada, Y, 2001. Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett. 494:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, G., Shimoda, M., and Okada, Y, 2004. ADAMTS4 (aggrecanase-1) interaction with the COOH-terminal domain of fibronectin inhibits proteolysis of aggrecan. J. Biol. Chem. in press.

    Google Scholar 

  • Hollander, A.P., Dieppe, P.A., Atkins, R.M., and Elson, C.J, 1993. Hypothesis: cartilage catabolic cofactors in human arthritis. J. Rheumatol. 20:223–224.

    PubMed  CAS  Google Scholar 

  • Homandberg, G, 1999. Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci. 4:D713–730.

    PubMed  CAS  Google Scholar 

  • Homandberg, G.A., Meyers, R., and Xie, D, 1992. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J. Biol. Chem. 267:3597–3604.

    PubMed  CAS  Google Scholar 

  • Hughes, C.E., Caterson, B., Fosang, A.J., Roughley, P.J., and Mort, J.S, 1995. Monoclonal antibodies that specifically recognize neoepitope sequences generated by ‘aggrecanase’ and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem. J. 305:799–804.

    PubMed  CAS  Google Scholar 

  • Hughes, C., Little, C., and Caterson, B, 2003. Measurement of aggrecanase-generated interglobular domain catabolites in the medium and extracts of cartilage explants using Western blot analysis. Methods Mol. Biol. 225:89–98.

    PubMed  CAS  Google Scholar 

  • Ilic, M.Z., Handley, C.J., Robinson, H.C., and Mok, M.T, 1992. Mechanism of catabolism of aggrecan by articular cartilage. Arch. Biochem. Biophys. 294:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Ilic, M., Vankemmelbeke, M., Holen, I., Buttle, D., Robinson, H.C., and Handley, C, 2000. Bovine joint capsule and fibroblasts derived from joint capsule express aggrecanase activity. Matrix Biol. 19:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Ismaiel, S., Hollander, A.P., Atkins, R.M., and Elson, C.J, 1991. Differential responses of human and rat cartilage to degrading stimuli in-vitro. J. Pharm. Pharmacol. 43:207–209.

    PubMed  CAS  Google Scholar 

  • Kaushal, G.P., and Shah, S.V, 2000. The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J. Clin. Invest. 105:1335–1337.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi, M., Enghild, J., Gendron, C., Hughes, C., Caterson, B., Itoh, Y., and Nagase, H, 2004. Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J. Biol. Chem. 279:10109–10119.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi, M., Tortorella, M.D., Nagase, H., and Brew, K. 2001. TIMP-3 is a potent inhibitor of ADAM-TS4 (aggrecanase 1) and ADAM-TS5 (aggrecanase 2). J. Biol. Chem. 276:12501–12504.

    Article  PubMed  CAS  Google Scholar 

  • Kevorkian, L., Young, D., Darrah, C., Donell, S., Shepstone, L., Porter, S., Brockbank, S., Edwards, D., Parker, A., and Clark, I, 2004. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 50:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Koshy, P., Lundy, C., Rowan, A., Porter, S., Edwards, D., Hogan, A., Clark, I., and Cawston, T, 2002. The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum. 46:961–967.

    Article  PubMed  CAS  Google Scholar 

  • Kuno, K., Okada, Y., Kawashima, H., Nakamura, H., Miyasaka, M., Ohno, H., and Matsushima, K, 2000. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett. 478:241–245.

    Article  PubMed  CAS  Google Scholar 

  • Lark, M.W., Gody, J.T., Weidner, J.R., Ayaia, J., Kimura, J.H., Williams, H.R., Mumford, R.A., Flannery, C.R., Carisoni, S.S., Iwatai, M., et al.. 1995. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the ‘aggrecanase’ site(Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J. Biol. Chem. 270:2550–2556.

    Article  PubMed  CAS  Google Scholar 

  • Levy, G., Nichols, W., Uan, E., Foroud, T., McClintick, J., McGee, B., Yang, A., Slemleniak, D., Stark, K., Gruppo, R., et al.. 2001. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413:488–494.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Arita, M., Fertala, A., Bao, Y., Kopen, G., Langsjo, T., Hyttinen, M., Helminen, H., and Prockop, D, 2001. Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem. J. 355:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Lohmander, L.S., Neame, P.J., and Sandy, J.S, 1993. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 36:1214–1222.

    PubMed  CAS  Google Scholar 

  • Loulakis, P., Shrikhande, A., Davis, G., and Maniglia, C.A, 1992. N-terminal sequence of proteoglycan fragments isolated from medium of interleukin1-treated articular cartilage cultures: putative site(s) of enzymatic cleavage. Biochem. J. 284:589–593.

    PubMed  CAS  Google Scholar 

  • MacLean, J.J., Lee, C.R., Grad, S., Ito, K., Alini, M., and Iatridis, J.C, 2003. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine 28:973–981.

    Article  PubMed  Google Scholar 

  • Makihira, S., Yan, W., Murakami, H., Furukawa, M., Kawai, T., Nikawa, H., Yoshida, E., Hamada, T., Okada, Y., Kato, Y, 2003. Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage. Endocrinology 144: 2480–8.

    Article  PubMed  CAS  Google Scholar 

  • Malfait, A.M., Liu, R.-Q., Ijiri, K., Setsuro, K., and Tortorella, M, 2002. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J. Biol. Chem. 277:22201–22208.

    Article  PubMed  CAS  Google Scholar 

  • Mankin, H.J., and Lipiello, L, 1970. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J. Bone. Joint Surg. [Am] 52:424–434.

    PubMed  CAS  Google Scholar 

  • Matthews, R., Gary, S., Zerillo, C., Pratta, M., Solomon, K., Arner, E., and Hockfield, S, 2000. Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J. Biol. Chem. 275:22695–22703.

    Article  PubMed  CAS  Google Scholar 

  • Medina-Flores, R., Wang, G., Bissel, SJ., Murphey-Corb, M., Wiley, CA, 2004, Destruction of extracellular matrix proteoglycans is pervasive in simian retroviral neuroinfection. Neurobiol. Dis. 16: 604–1.

    Article  PubMed  CAS  Google Scholar 

  • Moulharat, N., Lesur, C., Thomas, M., Rolland-Valognes, G., Pastoureau, P., Anract, P., De Ceuninck, F., and Sabatini, M, 2004. Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro. Osteoarthritis Cartilage 12:296–305.

    Article  PubMed  CAS  Google Scholar 

  • Mousa, S., and Liu, R, 2003. Effect of LMWH and Different Heparin Molecular Weight Fractions on Aggrecanase Activity: Structure-Function Relationships (abstract). IUA Congress, April 7–11 2002. New York, New York.

    Google Scholar 

  • Nakamura, H., Fujii, Y., Inoki, I., Sugimoto, K., Tanzawa, K., Matsuki, H., Miura, R., Yamaguchi, Y., and Okada, Y, 2000. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J. Biol. Chem. 275:38885–38890.

    Article  PubMed  CAS  Google Scholar 

  • Patwari, P., Kurz, B., Sandy, J.D., and Grodzinsky, A.J, 2000. Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch. Biochem. Biophys. 374:79–85.

    Article  PubMed  CAS  Google Scholar 

  • Pratta, M.A., Tortorella, M.D., and Arner, E.C. 2000. Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase. J. Biol. Chem. 275:39096–39102,.

    Article  PubMed  CAS  Google Scholar 

  • Pratta, M., Yao, W., Decicco, C., Tortorella, M., Liu, R., Copeland, R., Magolda, R., Newton, R., Trzaskos, J., and Arner, E, 2003. Aggrecan protects cartilage collagen from proteolytic cleavage. J. Biol. Chem. 278:45539–45545.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, S., Caterson, B., Menage, J., Evans, E., Jaffray, D., and Eisenstein, S, 2000. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013.

    Article  PubMed  CAS  Google Scholar 

  • Sandy, J.D., Flannery, C.R., Neame, P.J., and Lohmander, L.S, 1992. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel protease which cleaves the Glu373-Ala374 bond of the interglobular domain. J. Clin. Invest. 89:1512–1516.

    PubMed  CAS  Google Scholar 

  • Sandy, J.D., Gamett, D., Thompson, V., and Verscharen, C, 1998. Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem. J. 335:59–66.

    PubMed  CAS  Google Scholar 

  • Sandy, J.D., Neame, P.J., Boynton, P.L., and Flannery, C.R, 1991. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 266:8683–8685.

    PubMed  CAS  Google Scholar 

  • Sandy, J.D., and Verscharen, C, 2001a. Analysis of aggrecan in human knee cartilage and synovial fluid indicates the aggrecanase (ADAMTS) activity is responsible for the turnover and loss of whole aggrecan whereas other protease activity is required for Cterminal processing in vivo. Biochem. J. 358:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Sandy, J.D., Westling, J., Kenagy, R., Iruela-Arispe, M., Verscharen, C., Rodriguez-Mazaneque, J., Zimmermann, D., Lemire, J., Fischer, J., Wight, T., et al.. 2001b, Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J. Biol. Chem. 276: 13372–13378.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, K., Suzuki, N., and Yokota, H, 2000. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs) is transcriptionally induced in beta-amyloid treated rat astrocytes. Neurosci. Lett. 289:177–180.

    Article  PubMed  CAS  Google Scholar 

  • Soejima, K., Matsumoto, M., Kokame, K., Yagi, H., Ishizashi, H., Maeda, H., Nozaki, C., Miyata, T., Fujimura, Y., and Nakagaki, T, 2003. ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood 102:3232–3237.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, R., Longpre, J., Jungers, K., Engle, J., Ross, M., Evanko, S., Wight, T., Leduc, R., and Apte, SS, 2003. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct of ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278: 9503–9513.

    Article  PubMed  CAS  Google Scholar 

  • Stanton, H., Ung, L., and Fosang, A, 2002. The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. Biochem. J. 364:181–190.

    PubMed  CAS  Google Scholar 

  • Su, S., Grover, J., Roughley, P.J., DiBattista, J.A., Martel-Pelletier, J., Pelletier, J.P., and Zafarullah, M, 1999. Expression of the tissue inhibitor of metalloproteinases (TIMP) gene family in normal and osteoarthritic joints. Rheumatol. Int. 18:183–191.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, K., Takahashi, M., Yamamoto, Y., Shimada, K., and Tanzawa, K, 1999. Identification of aggrecanase activity in medium of cartilage culture. J. Biochem. 126:449–455.

    PubMed  CAS  Google Scholar 

  • Sylvester, J., Liacini, A., Li, W., and Zafarullah, M, 2004. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3,-13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 16:469–476.

    Article  PubMed  CAS  Google Scholar 

  • Sztrolovics, R., White, R.J., Roughley, P.J., and Mort, J.S, 2002. The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem. J. 362:465–472.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, N., Van de Ven, W., and Creemers, J, 2003. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J. 17:1215–1227.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M., Arner, E., Hills, R., Easton, A., Korte-Sarfaty, J., Fok, K., Wittwer, A., Liu, R., and Malfait, A.M, 2004. Alpha2-macroglobulin is a novel substrate for ADAMTS-4 and ADAMTS-5 and represents an endogenous inhibitor of these enzymes. J. Biol. Chem. 279:17554–17561.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M.D., Burn, T.C., Pratta, M.C., Abbaszade, I., Hollis, J.M., Liu, R., Rosenfeld, S.A., Copeland, R.A., Decicco, C.P., Wynn, R., et al.. 1999. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664–1666.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M.D., Liu, R.-Q., Burn, T., and Arner, E, 2002. Characterization of human aggrecanase 2 (ADAM-TS5): Substrate specificity studies in comparison with aggrecanase 1 (ADAM-TS4). Matrix Biology 21:499–511.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M.D., Malfait, A.M., Decicco, C., and Arner, E, 2001. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis and Cartilage 9:539–552.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M.D., Pratta, M.A., Fox, J.W., and Arner, E.C, 1998. The interglobular domain of cartilage aggrecan is cleaved by hemorrhagic metalloproteinase HT-d (Atrolysin-C) at the matrix metalloproteinase and aggrecanase sites. J. Biol. Chem 273:5846–5850.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M., Pratta, M., Liu, R.Q., Abbaszade, I., Ross, H., Burn, T., and Arner, E, 2000a. The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J. Biol. Chem. 275:25791–25797.

    Article  PubMed  CAS  Google Scholar 

  • Tortorella, M.D., Pratta, M., Liu, R.Q., Austin, J., Ross, O.H., Abbaszade, I., Burn, T., and Arner, E, 2000b. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J. Biol. Chem. 275:18566–18573.

    Article  PubMed  CAS  Google Scholar 

  • Tsuzaki, M., Guyton, G., Garrett, W., Archambault, J., Herzog, W., Almekinders, L., Bynum, D., Yang, X., and Banes, A, 2003. IL-1 beta induces COX2, MMP-1,-3 and-13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J. Orthop. Res. 21:256–264.

    Article  PubMed  CAS  Google Scholar 

  • Vankemmelbeke, M., Holen, I., Wilson, A., Ilic, M., Handley, C., Kelner, G., Clark, M., Liu, C., Maki, R., Burnett, D., et al.. 2001. Expression and activity of ADAMTS-5 in synovium. Eur. J. Biochem. 268:1259–1268.

    Article  PubMed  CAS  Google Scholar 

  • Vankemmelbeke, M., Jones, G., Fowles, C., Ilic, M., Handley, C., Day, A., Knight, C., Mort, J., and Buttle, D, 2003. Selective inhibition of ADAMTS-1,-4 and-5 by catechin gallate esters. Eur. J. Biochem. 270:2394–2403.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P., Tortorella, M., England, K., Malfait, A.M., Thomas, G., Arner, E.C., and Pei, D, 2004a. Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J. Biol. Chem. 279:15434–15440.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Luo, J., and Chen, Q, 2004b. Matrilin-2: a novel extracellular matrix substrate of aggrecanase-1 (ADAMTS4). Trans. Orthop. Res. Soc. 29:339.

    CAS  Google Scholar 

  • Westling, J., Gottschall, P., Thompson, V., Cockburn, A., Perides, G., Zimmermann, D., and Sandy, J, 2004. ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein. Biochem. J. 377:787–795.

    PubMed  CAS  Google Scholar 

  • Worley, J., Baugh, M., Hughes, D., Edwards, D., Hogan, A., Sampson, M., and Gavrilovic, J, 2003. Metalloproteinase expression in PMA-stimulated THP-1 cells. Effects of peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and 9-cisretinoic acid. J. Biol. Chem. 278:51340–51346.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D., Meyers, R., and Homandberg, G, 1992. Fibronectin fragments in osteoarthritic synovial fluid. J. Rheumatol. 19:1448–1452.

    PubMed  CAS  Google Scholar 

  • Yamanishi, Y., Boyle, D.L., Clark, M., Maki, R., Tortorella, M.D., Arner, E.C., and Firestein, G.S, 2002. Expression and regulation of aggrecanase in arthritis: the role of TGF-beta. J. Immunol. 168:1405–1412.

    PubMed  CAS  Google Scholar 

  • Yao, W., Wasserman, Z.K., Chao, M., Reddy, G., Shi, E., Liu, R.Q., Covington, M.B., Arner, E.C., Pratta, M.A., Tortorella, M., et al.. 2001. Design and synthesis of a series of (2r)-n(4)-hydroxy-2-(3-hydroxybenzyl)-n(1)-[(1s,2r)-2-hydroxy-2,3-dihydro-1h-inden-1ryl]butanediamide derivatives as potent, selective, and orally available aggrecanase inhibitors. J. Med. Chem. 21:3347–3350.

    Article  CAS  Google Scholar 

  • Yasuda, T., and Poole, A, 2002. A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum. 46:138–148.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W.H., Yu, S.C., Meng, Q., Brew, K., and Woessner, J, 2000. TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J. Biol. Chem. 275:31226–31232.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, W., Chockalingam, P.S., Shakey, Q., and Flannery, C.R, 2004. Selective cleavage of TIMP-4 by ADAMTS-4. Trans. Orthop. Res. Soc. 29:610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Malfait, AM., Tortorella, M., Arner, E. (2005). ADAMTS-4 and ADAMTS-5. In: Hooper, N.M., Lendeckel, U. (eds) The ADAM Family of Proteases. Proteases in Biology and Disease, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25151-0_14

Download citation

Publish with us

Policies and ethics