Skip to main content

Mammalian ADAMs with Testis-Specific or -Predominant Expression

Testicular ADAMs

  • Chapter
The ADAM Family of Proteases

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 4))

Abstract

A family of multidomain membrane proteins, the ADAM family (a disintegrin and metalloprotease), comprises at least 32 members. Based on an ADAM phylogenetic tree, mammalian ADAMs with testis-specific or -predominant expression are divided into two major groups: ADAMs 1, 4, 6, 20, 21, 24, 25, 26, 29, 30 and 34 (the first group), and ADAMs 2, 3, 5, 27 and 32 (the second group). All of the mammalian, testicular ADAMs predicted as active metalloproteases (ADAMs 1, 20, 21, 24, 25, 26, 30 and 34) belong to the first phylogenetic group and are unique in several aspects. All of these ADAM genes lack introns in their coding sequences and many of them are present as multiple copies in the mouse genome, resulting in total of 11 functional genes (ADAMs 1a, 1b, 21, 24, 25a, 25b, 25c, 26a, 26b, 30 and 34) predicted to encode active proteases. These genes are transcribed by both somatic and germ cells with higher expression level in post-meiotic germ cells in the testis. The ADAM 1 protein expressed in testicular germ cells is complexed with ADAM 2 to form a heterodimer and processed during spermatogenesis. Mouse knockout studies indicate that ADAM 1a/2 heterodimer in testicular germ cells is implicated in the regulation or localization of sperm proteins involved in sperm progression in the female reproductive tract, sperm penetration into the cumulus cell layer and sperm-egg zona pellucida binding, thus playing a central role in fertilization. ADAM 24 is a potential sperm protease implicated in sperm function during sperm maturation or fertilization. A number of the 11 mouse ADAMs do not have orthologues in human and, even if they exist, some orthologues are pseudogenes in human. As a result, only 3 human ADAMs (ADAMs 20, 21 and 30) are functional genes encoding potential metalloproteases. Uncovering the in vivo functions of the testicular ADAM proteases present in both species should provide insights into the mammalian reproductive system involving protease-mediated events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, E.A., Huovila, A.P., Sutherland, A.E., Stephens, L.E., Calarco, P.G., Shaw, L.M., Mercurio, A.M., Sonnenberg, A., Primakoff, P., Myles, D.G., White, J.M., 1995,. Mouse egg integrin α6β1 functions as a sperm receptor. Cell 81: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, C.P., Myles, D.G., Primakoff, P., White, J.M., 1990, Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J. Cell Biol. 111: 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, C.P., Wolfsberg, T.G., Turck, C.W., Myles, D.G., Primakoff, P., White, J.M., 1992, A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356: 248–252.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, C.P., 1997, Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNF alpha and Notch. Cell 90: 589–592.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, C.P., 2000, Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev. Reprod. 5: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Black, R.A., White. J.M., 1998, ADAMs: focus on the protease domain. Curr. Opin. Cell Biol. 10: 654–659.

    Article  PubMed  CAS  Google Scholar 

  • Bolcun, E., Rzymski, T., Nayernia, K., Engel, W., 2003, ADAM family genes testase 2 α and 2 β are chromosomally linked and simultaneously expressed in male germ cells. Mol. Reprod. Dev. 65: 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Brachvogel, B., Reichenberg, D., Beyer, S., Jehn, B., von der Mark, K., Bielke, W., 2002, Molecular cloning and expression analysis of a novel member of the Disintegrin and Metalloprotease-Domain (ADAM) family. Gene 288: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Cerretti, D.P., DuBose, R.F., Black, R.A., Nelson, N., 1999, Isolation of two novel metalloproteinase-disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochem. Biophys. Res. Commun. 263: 810–815.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C., Primakoff, P., White, J.M., Myles, D.G., 1996, Chromosomal assignment of four testis-expressed mouse genes from a new family of transmembrane proteins (ADAMs) involved in cell-cell adhesion and fusion. Genomics 34: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C., Turner, L., Primakoff, P., Myles, D.G., 1997, Genomic organization of the mouse fertilin β gene that encodes an ADAM family protein active in sperm-egg fusion. Dev. Genet. 20: 320–328.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C., Bunch D.O., Faure, J.-E., Goulding E.H., Eddy, E.M., Primakoff, P., Myles, D.G., 1998, Fertilization defects in sperm from mice lacking fertilin β. Science 281: 1857–1859.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C., Ge, H., Branciforte, D., Primakoff, P., Myles, D.G., 2000, Analysis of mouse fertilin in wild-type and fertilin β-/- sperm: evidence for C-terminal modification, α/β dimerization, and lack of essential role of fertilin α in sperm-egg fusion. Dev. Biol. 222:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Choi, I., Woo, J.M., Hong, S., Jung, Y.K., Kim D.H., Cho, C., 2003, Identification and characterization of ADAM32 with testis-predominant gene expression. Gene 304: 151–162.

    Article  PubMed  CAS  Google Scholar 

  • Choi, I., Oh, J., Cho, B.N., Ahnn, J., Jung, Y.K., Kim H.D., Cho, C., 2004, Characterization and comparative genomic analysis of intronless Adams with testicular gene expression. Genomics 83: 636–646.

    Article  PubMed  CAS  Google Scholar 

  • Eddy, E.M., 1998, Regulation of gene expression during spermatogenesis, Semin. Cell Dev. Biol. 9: 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J.P., Schultz, R.M., Kopf, G.S., 1995, Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) β. J. Cell Sci. 108: 3267–3278.

    PubMed  CAS  Google Scholar 

  • Evans J.P., Schultz, R.M., Kopf, G.S., 1998, Roles of the disintegrin domains of mouse fertilins α and β in fertilization. Biol. Reprod. 59: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J.P., 2001, Fertilin β and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 23: 628–639.

    Article  PubMed  CAS  Google Scholar 

  • Frayne, J., Jury, J.A., Barker, H.L., Hall, L., 1997, Rat MDC family of proteins: sequence analysis, tissue distribution, and expression in prepubertal and adult rat testis. Mol. Reprod. Dev. 48: 159–167.

    Article  PubMed  CAS  Google Scholar 

  • Frayne, J., Jury, J.A., Barker, H.L., Perry, A.C., Jones, R., Hall, L., 1998, Macaque MDC family of proteins: sequence analysis, tissue distribution and processing in the male reproductive tract. Mol. Hum. Reprod. 4: 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, C.M., Holland, M.K.,1996, Cloning and expression of recombinant rabbit fertilin. Mol Reprod. Dev. 45: 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Hooft van Huijsduijnen, R., 1998, ADAM 20 and 21; two novel human testis-specific membrane metalloproteases with similarity to fertilin-α. Gene 206: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Hunnicutt, G.R., Koppel, D.E., Myles, D.G., 1997, Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis. Dev. Biol. 191: 146–159.

    Article  PubMed  CAS  Google Scholar 

  • Ikawa, M., Wada, I., Kominami, K., Watanabe, D., Toshimori, K., Nishimune, Y., Okabe, M., 1997, The putative chaperone calmegin is required for sperm fertility. Nature 387: 607–611.

    Article  PubMed  CAS  Google Scholar 

  • Ikawa, M., Nakanishi, T., Yamada, S., Wada, I., Kominami, K., Tanaka, H., Nozaki, M., Nishimune, Y., Okabe, M., 2001, Calmegin is required for fertilin α/β heterodimerization and sperm fertility. Dev Biol. 240: 254–261.

    Article  PubMed  CAS  Google Scholar 

  • Jury, J.A., Frayne, J., Hall, L., 1997, The human fertilin α gene is non-functional: implications for its proposed role in fertilization. Biochem. J. 321: 577–581.

    PubMed  CAS  Google Scholar 

  • Jury, J.A., Frayne, J., Hall, L., 1998, Sequence analysis of a variety of primate fertilin α genes: evidence for non-functional genes in the gorilla and man. Mol. Reprod. Dev. 51:92–97.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Nishimura, H., Baba, T., 2003, Differential localization of ADAM1a and ADAM1b in the endoplasmic reticulum of testicular germ cells and on the surface of epididymal sperm. Biochem. Biophys. Res. Commun. 304: 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L., Smith, J.W., 2000, Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia. Endocrinology 141: 2033–2042.

    Article  PubMed  CAS  Google Scholar 

  • Lum, L., Blobel, C.P., 1997, Evidence for distinct serine protease activities with a potential role in processing the sperm protein fertilin. Dev Biol. 191: 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Martin, I., Epand, R.M., Ruysschaert, J.M., 1998, Structural properties of the putative fusion peptide of fertilin, a protein active in sperm-egg fusion, upon interaction with the lipid bilayer. Biochemistry 37: 17030–17039.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, E.A., Frayne, J., Barker, H.L., Jury, J.A., Jones, R., Ford, W.C., Hall, L., 1997, Cloning and sequence analysis of rat fertilin α and β-developmental expression, processing and immunolocalization. Mol. Hum. Reprod. 3: 801–809.

    Article  PubMed  CAS  Google Scholar 

  • Muga, A., Neugebauer, W., Hirama, T., Surewicz, W.K., 1994, Membrane interactive and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion. Biochemistry 33: 4444–4448.

    Article  PubMed  CAS  Google Scholar 

  • Myles, D.G., 1993, Molecular mechanisms of sperm-egg membrane binding and fusion in mammals. Dev. Biol. 158: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Myles, D.G., Kimmel, L.H., Blobel, C.P., White, J.M., Primakoff, P., 1994, Identification of a binding site in the disintegrin domain of fertilin required for sperm-egg fusion. Proc. Natl. Acad. Sci. U.S.A. 91: 4195–4198.

    Article  PubMed  CAS  Google Scholar 

  • Myles, D.G., Primakoff, P., 1997, Why did the sperm cross the cumulus? To get to the oocyte. Functions of the sperm surface proteins PH-20 and fertilin in arriving at, and fusing with, the egg. Biol. Reprod. 56: 320–327.

    Article  PubMed  CAS  Google Scholar 

  • Niidome, T., Kimura, M., Chiba, T., Ohmori, N., Mihara, H., Aoyagi, H., 1997, Membrane interaction of synthetic peptides related to the putative fusogenic region of PH-30α, a protein in sperm-egg fusion. J. Pept. Res. 49: 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., Cho, C., Branciforte, D.R., Myles, D.G., Primakoff, P., 2001, Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin β. Dev. Biol. 233: 204–213.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., Kim, E., Fujimori, T., Kashiwabara, S., Kuroiwa, A., Matsuda, Y., Baba, T., 2002, The ADAM1a and ADAM1b genes, instead of the ADAM1 (fertilin α) gene, are localized on mouse chromosome 5. Gene 291: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., Kim, E., Nakanishi, T., Baba, T., 2004, Possible function of the ADAM1a/ADAM2 fertilin complex in the appearance of ADAM3 on the sperm surface. J. Biol. Chem. in press.

    Google Scholar 

  • Perry, A.C., Jones, R., Hall, L., 1995, Analysis of transcripts encoding novel members of the mammalian metalloprotease-like, disintegrin-like, cysteine-rich (MDC) protein family and their expression in reproductive and non-reproductive monkey tissues. Biochem. J. 312:239–244.

    PubMed  CAS  Google Scholar 

  • Phelps, B.M., Koppel, D.E., Primakoff, P., Myles, D.G., 1990, Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell Biol. 111: 1839–1847.

    Article  PubMed  CAS  Google Scholar 

  • Poindexter, K., Nelson, N, DuBose, R.F., Black, R.A., Cerretti, D.P, 1999, The identification of seven metalloproteinase-disintegrin (ADAM) genes from genomic libraries. Gene 237:61–70.

    Article  PubMed  CAS  Google Scholar 

  • Primakoff, P., Hyatt, H., Tredick-Kline, J., 1989, Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 104: 141–149.

    Article  Google Scholar 

  • Primakoff, P., Myles, D.G., 2000, The ADAM gene family. Trends Genet. 16: 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Primakoff, P., Myles, D.G., 2002, Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science 296: 2183–2185.

    Article  PubMed  CAS  Google Scholar 

  • Puente, X.S., Sanchez, L.M., Overall, C.M., Lopez-Otin, C., 2003, Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4: 544–558.

    Article  PubMed  CAS  Google Scholar 

  • Shamsadin., R., Adham, I.M., Nayernia, K., Heinlein, U.A., Oberwinkler, H., Engel, W., 1999, Male mice deficient for germ-cell cyritestin are infertile. Biol. Reprod. 61: 1445–1451.

    Article  PubMed  CAS  Google Scholar 

  • Snell, W.J., White, J.M., 1996, The molecules of mammalian fertilization. Cell 85: 629–637.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, P., Shur, B.D., Myles, D.G., 2003, Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol. Reprod. 68: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman, P.M., 1999, Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell 96: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Waters, S.I., White, J.M., 1997, Biochemical and molecular characterization of bovine fertilin α and β (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol. Reprod. 56: 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Waterston, R.H. et al., 2002, Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

    Article  PubMed  CAS  Google Scholar 

  • White, J.M., 2003, ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol. 15: 598–606.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, C.A., Cladera, J., Ladha, S., Senior, S., Jones, R., O’Shea, P., 1999, Membrane interactions of the putative fusion peptide (MF αP) from fertilin-α, the mouse sperm protein complex involved in fertilization. Mol. Membr. Biol. 16: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T.G., Bazan, J.F., Blobel, C.P., Myles, D.G., Primakoff, P., White, J.M., 1993, The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl. Acad. Sci. U.S.A. 90: 10783–10787.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T.G., Primakoff, P., Myles, D.G., White, J.M., 1995a, ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T.G., Straight, P.D., Gerena, R.L., Huovila, A.-P.J., Primakoff, P., Myles, D.G., White, J.M., 1995b, ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with A Disintegrin And Metalloprotease domain. Dev. Biol. 169: 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T.G., White, J.M., 1996, ADAMs in fertilization and development. Dev. Biol. 180: 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Wong, G.E., Zhu, X., Prater, C.E., Oh, E., Evans, J.P., 2001, Analysis of fertilin α (ADAM1)-mediated sperm-egg cell adhesion during fertilization and identification of an adhesion-mediating sequence in the disintegrin-like domain. J. Biol. Chem. 276: 24937–24945.

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi, R., 1994, Mammalian fertilization. In: The Physiology of Reproduction. Knobil E and Neill JD Eds. Raven, New York, pp189–317.

    Google Scholar 

  • Yuan, R., Primakoff, P., Myles, D.G., 1997, A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J. Cell Biol. 137: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, G.-Z., Lin, Y., Myles, D.G., Primakoff, O., 1999, Identification of four novel ADAMs with potential roles in spermatogenesis and fertilization. Gene 234: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, G.-Z., Myles, D.G., Primakoff, P., 2001, Testase 1 (ADAM24) a plasma membrane-anchored sperm protease implicated in sperm function during epididymal maturation or fertilization. J. Cell Sci. 114: 1787–1794.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Cho, C. (2005). Mammalian ADAMs with Testis-Specific or -Predominant Expression. In: Hooper, N.M., Lendeckel, U. (eds) The ADAM Family of Proteases. Proteases in Biology and Disease, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25151-0_11

Download citation

Publish with us

Policies and ethics