Skip to main content

Non Cross-Bridge Stiffness in Skeletal Muscle Fibres at Rest and During Activity

  • Conference paper
Sliding Filament Mechanism in Muscle Contraction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Allen, D.G., Blinks, J.R., and Godt, R.E., 1984, Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle, J. Physiol. 354:225–51.

    PubMed  CAS  Google Scholar 

  • Bagni, M.A., Cecchi, G., Colombini, B., and Colomo, F., 2002, A non-cross-bridge stiffness in activated frog muscle fibres, Biophys. J. 82(6):3118–27.

    PubMed  CAS  Google Scholar 

  • Bagni, M.A., Cecchi, G., Colomo, F., and Garzella, P., 1992, Are weakly binding bridges present in resting intact muscle fibres? Biophys. J. 63:1412–1415.

    PubMed  CAS  Google Scholar 

  • Bagni, M.A., Cecchi, G., Colomo, F., and Garzella, P., 1994, Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres, J. Physiol. 481(2):273–278.

    PubMed  CAS  Google Scholar 

  • Bagni, M.A., Cecchi, G., Colomo, F., and Garzella, P., 1995, Absence of mechanical evidence for attached weakly binding cross-bridges in frog relaxed muscle fibres, J. Physiol. 482(2):391–400.

    PubMed  CAS  Google Scholar 

  • Bagni, M.A., Colombini, B., Geiger, P., Berlinguer Palmini, R., and Cecchi, G., 2004, A non cross-bridge calcium-dependent stiffness in frog muscle fibers, Am. J. Physiol. Cell Physiol. in press.

    Google Scholar 

  • Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L.E., and Eisenberg, E., 1982, Evidence for crossbridges attachment in relaxed muscle at low ionic strength, PNAS 79:7288–7391.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, B., Yu., L.C., and Podolsky, R.J., 1984, X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibres at various ionic strengths. Biophys. J. 46:299–306.

    PubMed  CAS  Google Scholar 

  • Brenner, B., 1990, Muscle mechanism and biochemical kinetics, in: Molecular Mechanism in Muscular Contraction, J.M. Squire, ed., Macmillan Press Ltd, Southampton, UK, pp. 77–149.

    Google Scholar 

  • Cecchi, G., Griffiths, P.J., and Taylor, S., 1982, Muscular contraction: kinetics of crossbridge attachment studied by high-frequency stiffness measurements, Science 217:70–72.

    Article  PubMed  CAS  Google Scholar 

  • Chalovich, J.M., Chock, P.B., and Eisenberg, E., 1981, Mechanism of action of troponin-tropomyosin inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J. Biol. Chem. 256:575–578.

    PubMed  CAS  Google Scholar 

  • Claflin, D.R., Morgan, D.L., Stephenson, D.G., and Julian, F.J., 1994, The intracellular Ca2+ transient and tension in frog skeletal muscle fibres measured with high temporal resolution,. J. Physiol. 475(2):319–325.

    PubMed  CAS  Google Scholar 

  • Eisenberg, R.S., McCarthy, R.T., and Milton, R.L., 1983, Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600, J. Physiol. 341:495–505.

    PubMed  CAS  Google Scholar 

  • Ford, L.E., Huxley, A.F., and Simmons, R.M., 1981, The relation between stiffness and filament overlap in stimulated frog muscle fibres, J. Physiol. 311:219–249.

    PubMed  CAS  Google Scholar 

  • Ford, L.E., Huxley, A.F., and Simmons, R.M., 1986, Tension transients during the rise of tetanic tension frog muscle fibres, J. Physiol. 372:595–609.

    PubMed  CAS  Google Scholar 

  • Helland, L.A., Lopez, J.R., Taylor, S.R., Trube, G., and Wanek, L.A., 1988, Effects of calcium “antagonists” on vertebrate skeletal muscle cells, Ann. N. Y. Acad. Sci. 522:259–68.

    Article  PubMed  CAS  Google Scholar 

  • Horiuti, K., Higuchi, H., Umazume, Y., Konishi, M., Okazaki, O., and Kitohara, S., 1988, Mechanism of action of 2,3-butanedione 2-monoxime on contraction of frog skeletal muscle, J. Muscle Res. Cell Motil. 9:156–164.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer, M.S.Z., and Granzier, H.L., 1996, Calcium-dependent inhibition of in vitro thin-filament motility by native titin, FEBS Lett. 380:281–286.

    Article  PubMed  CAS  Google Scholar 

  • Labeit, D., Watanabe, K., Witt, C, Fujita, H., Wu, Y., Lahmers, S., Funck, T., Labeit, S., and Granzier, H., 2003, Calcium-dependent molecular spring elements in the giant protein titin, PNAS 100(23):13716–13721.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.L., Claflin, D.R., and Julian, F.J., 1997, The relationship between tension and slowly varying intracellular calcium concentration in intact frog skeletal muscle, J. Physiol. 500.1:177–92.

    PubMed  Google Scholar 

  • Parker, I., and Zhu, P.H., 1987, Effects of hypertonic solutions on calcium transients in frog twitch muscle fibres, J. Physiol. 383:615–27.

    PubMed  CAS  Google Scholar 

  • Sato, Y., and Fujino, M., 1987, Inhibition of arsenazo HI Ca transient with deuterium oxide in frog twitch fibres at a resting sarcomere length, Jpn. J. Physiol. 37(1):149–53.

    PubMed  CAS  Google Scholar 

  • Schoenberg, M., 1985, Equilibrium muscle crossbridge behavior: theoretical considerations, Biophys. J. 48:467–475.

    PubMed  CAS  Google Scholar 

  • Schoenberg, M., 1988, Characterization of the myosin adenosine triphospate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibres. Biophys. J. 54, 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y.B., Lou, F., and Edman, K.A., 1996, The relationship between the intracellular Ca2+ transient and the isometric twitch force in frog muscle fibres, Exp. Physiol. 81(5):711–724.

    PubMed  CAS  Google Scholar 

  • Takauji, M., Takahashi, N., Nagai, T., 1975, Effect of dantrolene sodium on excitation-contraction coupling in frog skeletal muscle, Jpn. J. Physiol. 25(6):747–58.

    PubMed  CAS  Google Scholar 

  • Tatsumi, R., Maeda, K., Hattori, A., and Takahashi, K., 2001, Calcium binding to an elastic portion of connectin/titin filaments, J. Muscle Res. Cell Motil. 22(2): 149–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Bagni, M.A., Colombini, B., Colomo, F., Palmini, R.B., Cecchi, G. (2005). Non Cross-Bridge Stiffness in Skeletal Muscle Fibres at Rest and During Activity. In: Sugi, H. (eds) Sliding Filament Mechanism in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 565. Springer, Boston, MA. https://doi.org/10.1007/0-387-24990-7_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-24990-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24989-6

  • Online ISBN: 978-0-387-24990-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics