Skip to main content

Aptamers as Emerging Probes for Macromolecular Sensing

  • Chapter
Advanced Concepts in Fluorescence Sensing

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 10))

Abstract

Aptamers, derived from the latin word aptus (meaning, “to fit”), are functional nucleic acid binding species that have been selected from combinatorial oligonucleotide libraries by a process known as in vitro selection.1,2 Since 1990, numerous high-affinity and highly specific aptamers have been selected against a wide variety of target molecules, such as small organics, peptides, proteins, and even supramolecular complexes, such as viruses or cells.3,4 Since aptamers have been shown to discriminate between even closely related isomers or different conformational states of the same protein,5,6 they are becoming an increasingly popular tool for molecular recognition that may eventually rival antibodies. Their utility has now been demonstrated in a number of analytical applications, such as flow cytometry,7,8 affinity probe capillary electrophoresis9, sandwich assays,10 capillary electrochromatography,11,12 affinity chromatography,13,14 and more generally as biosensors.1518

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.7. References

  1. Ellington, A. D.; Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands, Nature 1990, 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  2. Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science (Washington, D. C., 1883–) 1990, 249, 505–510.

    Article  CAS  Google Scholar 

  3. Wilson, D. S.; Szostak, J. W. In vitro selection of functional nucleic acids, Annu. Rev. Biochem. 1999, 68, 611–647.

    Article  PubMed  CAS  Google Scholar 

  4. Famulok, M.; Mayer, G.; Blind, M. Nucleic acid aptamers-from selection in vitro to applications in vivo, Acc. Chem. Res. 2000, 33, 591–599.

    Article  PubMed  CAS  Google Scholar 

  5. Conrad, R.; Keranen, L. M.; Ellington, A. D.; Newton, A. C. Isozyme-specific inhibition of protein kinase C by RNA aptamers, J. Biol. Chem. 1994, 269, 32051–32054.

    PubMed  CAS  Google Scholar 

  6. Seiwert, S. D.; Stines Nahreini, T.; Aigner, S.; Ahn, N. G.; Uhlenbeck, O. C. RNA aptamers as pathway-specific MAP kinase inhibitors, Chem. Biol. 2000, 7, 833–843.

    Article  PubMed  CAS  Google Scholar 

  7. Davis, K. A.; Abrams, B.; Lin, Y.; Jayasena, S. D. Use of a high affinity DNA ligand in flow cytometry, Nucleic Acids Res. 1996, 24, 702–706.

    Article  PubMed  CAS  Google Scholar 

  8. Davis, K. A.; Lin, Y.; Abrams, B.; Jayasena, S. D. Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry, Nucleic Acids Res. 1998, 26, 3915–3924.

    Article  PubMed  CAS  Google Scholar 

  9. German, I.; Buchanan, D. D.; Kennedy, R. T. Aptamers as ligands in affinity probe capillary electrophoresis, Anal. Chem. 1998, 70, 4540–4545.

    Article  PubMed  CAS  Google Scholar 

  10. Drolet, D. W.; Moon-McDermott, L.; Romig, T. S. An enzyme-linked oligonucleotide assay, Nat. Biotechnol. 1996, 14, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  11. Kotia, R. B.; Li, L.; McGown, L. B. Separation of nontarget compounds by DNA aptamers, Anal. Chem. 2000, 72, 827–831.

    Article  PubMed  CAS  Google Scholar 

  12. Rehder, M. A.; McGown, L. B. Open-tubular capillary electrochromatography of bovine beta-lactoglobulin variants A and B using an aptamer stationary phase, Electrophoresis 2001, 22, 3759–3764.

    Article  PubMed  CAS  Google Scholar 

  13. Romig, T. S.; Bell, C.; Drolet, D. W. Aptamer affinity chromatography: combinatorial chemistry applied to protein purification, J. Chromatogr. B Biomed. Sci. Appl. 1999, 731, 275–284.

    Article  PubMed  CAS  Google Scholar 

  14. Deng, Q.; German, I.; Buchanan, D.; Kennedy, R. T. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase, Anal. Chem. 2001, 73, 5415–5421.

    Article  PubMed  CAS  Google Scholar 

  15. Kleinjung, F.; Klussmann, S.; Erdmann, V. A.; Scheller, F. W.; Fuerste, J. P.; Bier, F. F. Binders in biosensors:high-affinity RNA for small analytes, Anal. Chem. 1998, 70, 328–331.

    Article  CAS  Google Scholar 

  16. McCauley, T. G.; Hamaguchi, N.; Stanton, M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules, Anal. Biochem. 2003, 319, 244–250.

    Article  PubMed  CAS  Google Scholar 

  17. Hesselberth, J.; Robertson, M. P.; Jhaveri, S.; Ellington, A. D. In vitro selection of nucleic acids for diagnostic applications, J Biotechnol 2000, 74, 15–25.

    PubMed  CAS  Google Scholar 

  18. Rajendran, M.; Ellington, A. D. Selecting nucleic acids for biosensor applications, Comb Chem High Throughput Screen 2002, 5, 263–270.

    Article  PubMed  CAS  Google Scholar 

  19. Conrad, R. C; Giver, L.; Tian, Y.; Ellington, A. D. In vitro selection of nucleic acid aptamers that bind proteins, Methods Enzymol. 1996, 267, 336–367.

    Article  PubMed  CAS  Google Scholar 

  20. Cox, J. C; Rudolph, P.; Ellington, A. D. Automated RNA selection, Biotechnol. Prog. 1998, 14, 845–850.

    Article  PubMed  CAS  Google Scholar 

  21. Jenison, R. D.; Gill, S. C; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA, Science 1994, 263, 1425–1429.

    Article  PubMed  CAS  Google Scholar 

  22. Jayasena, S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 1999, 45, 1628–1650.

    PubMed  CAS  Google Scholar 

  23. Pavski, V.; Le, X. C. Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis, Anal. Chem. 2001, 73, 6070–6076.

    Article  PubMed  CAS  Google Scholar 

  24. Kawazoe, N.; Ito, Y.; Imanishi, Y. Bioassay using a labeled oligonucleotide obtained by in vitro selection, Biotechnol. Prog. 1997, 13, 873–874.

    Article  PubMed  CAS  Google Scholar 

  25. Burgstaller, P.; Kochoyan, M.; Famulok, M. Structural probing and damage selection of citrulline-and arginine-specific RNA aptamers identify base positions required for binding, Nucleic Acids Res. 1995, 23, 4769–4776.

    Article  PubMed  CAS  Google Scholar 

  26. Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer, J. Biol. Chem. 1993, 268, 17651–17654.

    PubMed  CAS  Google Scholar 

  27. Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers, Science 2000, 287, 820–825.

    Article  PubMed  CAS  Google Scholar 

  28. Ye, X.; Gorin, A.; Frederick, R.; Hu, W.; Majumdar, A.; Xu, W.; McLendon, G.; Ellington, A.; Patel, D. J. RNA architecture dictates the conformations of a bound peptide, Chem. Biol. 1999, 6, 657–669.

    Article  PubMed  CAS  Google Scholar 

  29. Patel, D. J.; Suri, A. K. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics, Rev. Mol. Biotechnol. 2000, 74, 39–60.

    Article  CAS  Google Scholar 

  30. Sassanfar, M.; Szostak, J. W. An RNA motif that binds ATP, Nature 1993, 364, 550–553.

    Article  PubMed  CAS  Google Scholar 

  31. Huizenga, D. E.; Szostak, J. W. A DNA aptamer that binds adenosine and ATP, Biochemistry 1995, 34, 656–665.

    Article  PubMed  CAS  Google Scholar 

  32. Jhaveri, S.; Kirby, R.; Conrad, R.; Maglott, E. J.; Bowser, M.; Kennedy, R. T.; Glick, G.; Ellington, A. D. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity, J. Am. Chem. Soc. 2000, 122, 2469–2473.

    Article  CAS  Google Scholar 

  33. Yamana, K.; Ohtani, Y.; Nakano, H.; Saito, I. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor, Bioorg. Med. Chem. Lett. 2003, 13, 3429–3431.

    Article  PubMed  CAS  Google Scholar 

  34. Jhaveri, S.; Rajendran, M.; Ellington, A. D. In vitro selection of signaling aptamers, Nat. Biotechnol. 2000, 18, 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  35. Tyagi, S.; Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotechnol. 1996, 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  36. Tyagi, S.; Bratu, D. P.; Kramer, F. R. Multicolor molecular beacons for allele discrimination, Nat. Biotechnol. 1998, 16, 49–53.

    Article  PubMed  CAS  Google Scholar 

  37. Tan, W.; Fang, X.; Li, J.; Liu, X. Molecular beacons: a novel DNA probe for nucleic acid and protein studies, Chemistry 2000, 6, 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  38. Fang, X.; Li, J. J.; Perlette, J.; Tan, W.; Wang, K. Molecular beacons: novel fluorescent probes, Anal. Chem. 2000, 72, 747A–753A.

    Article  PubMed  CAS  Google Scholar 

  39. Marras, S. A.; Kramer, F. R.; Tyagi, S. Multiplex detection of single-nucleotide variations using molecular beacons, Genet. Anal. 1999, 14, 151–156.

    Article  PubMed  CAS  Google Scholar 

  40. Lakowicz, J. R. Principles of Fluorescence Spectroscopy., 2 ed.; Kluwer Academic/Plenum Press: New York, N.Y., 1999.

    Book  Google Scholar 

  41. Morrison, L. E. Homogeneous detection of specific DNA sequences by flourescence quenching and energy transfer, J. Fluorescence 1999, 9, 187–196.

    Article  CAS  Google Scholar 

  42. Bock, L. C; Griffin, L. C; Latham, J. A.; Vermaas, E. H.; Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature 1992, 355, 564–566.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, Q.; Tsiang, M.; Sadler, J. E. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite, J. Biol. Chem. 1992, 267, 24408–24412.

    PubMed  CAS  Google Scholar 

  44. Paborsky, L. R.; McCurdy, S. N.; Griffin, L. C; Toole, J. J.; Leung, L. L. The single-stranded DNA aptamer-binding site of human thrombin, J. Biol. Chem. 1993, 268, 20808–20811.

    PubMed  CAS  Google Scholar 

  45. Macaya, R. F.; Waldron, J. A.; Beutel, B. A.; Gao, H.; Joesten, M. E.; Yang, M.; Patel, R.; Bertelsen, A. H.; Cook, A. F. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs, Biochemistry 1995, 34, 4478–4492.

    Article  PubMed  CAS  Google Scholar 

  46. Tsiang, M.; Jain, A. K.; Dunn, K. E.; Rojas, M. E.; Leung, L. L.; Gibbs, C. S. Functional mapping of the surface residues of human thrombin, J. Biol. Chem. 1995, 270, 16854–16863.

    Article  PubMed  CAS  Google Scholar 

  47. Tasset, D. M.; Kubik, M. F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J. Mol. Biol. 1997, 272, 688–698.

    Article  PubMed  CAS  Google Scholar 

  48. Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution, Proc. Natl. Acad. Sci. U S A 1993, 90, 3745–3749.

    Article  PubMed  CAS  Google Scholar 

  49. Schultze, P.; Macaya, R. F.; Feigon, J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG), J. Mol. Biol. 1994, 235, 1532–1547.

    Article  PubMed  CAS  Google Scholar 

  50. Kelly, J. A.; Feigon, J.; Yeates, T. O. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG), J. Mol. Biol. 1996, 256, 417–422.

    Article  PubMed  CAS  Google Scholar 

  51. Hamaguchi, N.; Ellington, A.; Stanton, M. Aptamer beacons for the direct detection of proteins, Anal. Biochem. 2001, 294, 126–131.

    Article  PubMed  CAS  Google Scholar 

  52. Stojanovic, M. N.; de Prada, P.; Landry, D. W. Aptamer-based folding fluorescent sensor for cocaine, J. Am. Chem. Soc. 2001, 123, 4928–4931.

    Article  PubMed  CAS  Google Scholar 

  53. Fang, X.; Sen, A.; Vicens, M.; Tan, W. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay, Chembiochem. 2003, 4, 829–834.

    Article  PubMed  CAS  Google Scholar 

  54. Li, J. J.; Fang, X.; Tan, W. Molecular aptamer beacons for real-time protein recognition, Biochem. Biophys. Res. Commun. 2002, 292, 31–40.

    Article  PubMed  CAS  Google Scholar 

  55. Nutiu, R.; Li, Y. Structure-switching signaling aptamers, J. Am. Chem. Soc. 2003, 125, 4771–4778.

    Article  PubMed  CAS  Google Scholar 

  56. Stojanovic, M. N.; de Prada, P.; Landry, D. W. Fluorescent sensors based on aptamer self-assembly, J. Am. Chem. Soc. 2000, 122, 11547–11548.

    Article  CAS  Google Scholar 

  57. Yamamoto, R.; Baba, T.; Kumar, P. K. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1, Genes Cells 2000, 5, 389–396.

    Article  PubMed  CAS  Google Scholar 

  58. Merino, E. J.; Weeks, K. M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer, J. Am. Chem. Soc. 2003, 125, 12370–12371.

    Article  PubMed  CAS  Google Scholar 

  59. Rajendran, M.; Ellington, A. D. In vitro selection of molecular beacons, Nucleic Acids Res. 2003, 31, 5700–5713.

    Article  PubMed  CAS  Google Scholar 

  60. Poddar, S. K. Detection of adenovirus using PCR and molecular beacon, J. Virol. Methods 1999, 82, 19–26.

    Article  PubMed  CAS  Google Scholar 

  61. Sokol, D. L.; Zhang, X.; Lu, P.; Gewirtz, A. M. Real time detection of DNA.RNA hybridization in living cells, Proc. Natl. Acad. Sci. U S A 1998, 95, 11538–11543.

    Article  PubMed  CAS  Google Scholar 

  62. Liu, X.; Tan, W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons, Anal. Chem. 1999, 71, 5054–5059.

    Article  PubMed  CAS  Google Scholar 

  63. Steemers, F. J.; Ferguson, J. A.; Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiberoptic gene arrays, Nat. Biotechnol. 2000, 18, 91–94.

    Article  PubMed  CAS  Google Scholar 

  64. Fang, X.; Li, J. J.; Tan, W. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA, Anal. Chem. 2000, 72, 3280–3285.

    Article  PubMed  CAS  Google Scholar 

  65. Potyrailo, R. A.; Conrad, R. C; Ellington, A. D.; Hieftje, G. M. Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal. Chem. 1998, 70, 3419–3425.

    Article  PubMed  CAS  Google Scholar 

  66. Fang, X.; Cao, Z.; Beck, T.; Tan, W. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy, Anal. Chem. 2001, 73, 5752–5757.

    Article  PubMed  CAS  Google Scholar 

  67. Biran, I.; Rissin, D. M.; Ron, E. Z.; Walt, D. R. Optical imaging fiber-based live bacterial cell array biosensor, Anal. Biochem. 2003, 315, 106–113.

    Article  PubMed  CAS  Google Scholar 

  68. D’Orazio, P. Biosensors in clinical chemistry, Clin. Chim. Acta 2003, 334, 41–69.

    Article  PubMed  Google Scholar 

  69. Sapsford, K. E.; Rasooly, A.; Taitt, C. R.; Ligler, F. S. Detection of Campylobacter and Shigella species in food samples using an array biosensor., Anal. Chem. 2004, 76, 433–440.

    Article  PubMed  CAS  Google Scholar 

  70. Ramsay, G. DNA chips: state-of-the art, Nat. Biotechnol. 1998, 16, 40–44.

    Article  PubMed  CAS  Google Scholar 

  71. Eisen, M. B.; Brown, P. O. DNA arrays for analysis of gene expression, Methods Enzymol. 1999, 303, 179–205.

    Article  PubMed  CAS  Google Scholar 

  72. Cox, J. C; Hayhurst, A.; Hesselberth, J.; Bayer, T. S.; Georgiou, G.; Ellington, A. D. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer, Nucleic Acids Res. 2002, 30, el08.

    Article  Google Scholar 

  73. Green, N. M. Avidin, Adv. Protein Chem. 1975, 29, 85–133.

    Article  PubMed  CAS  Google Scholar 

  74. Lavigne, J. J.; Savoy, S.; Clevenger, M. B.; Ritchie, J. E.; McDoniel, B.; Yoo, S. J.; Anslyn, E. V.; McDevitt, J. T.; Shear, J. B.; Neikirk, D. P. Solution-based analysis of multiple analytes by a sensor array: toward the development of an “Electronic tongue”. J. Am. Chem. Soc. 1998, 120, 6429–6430.

    Article  CAS  Google Scholar 

  75. Buranda, T.; Huang, J.; Perez-Luna, V. H.; Schreyer, B.; Sklar, L. A.; Lopez, G. P. Biomolecular recognition on well-characterized beads packed in microfluidic channels, Anal. Chem. 2002, 74, 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  76. Seong, G. H.; Crooks, R. M. Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts, J. Am. Chem. Soc. 2002, 124, 13360–13361.

    Article  PubMed  CAS  Google Scholar 

  77. Fulton, R. J.; McDade, R. L.; Smith, P. L.; Kienker, L. J.; Kettman, J. R., Jr. Advanced multiplexed analysis with the FlowMetrix system, Clin. Chem. 1997, 43, 1749–1756.

    PubMed  CAS  Google Scholar 

  78. Egner, B. J.; Rana, S.; Smith, H.; Bouloc, N.; Frey, J. G.; Brocklesby, W. S.; Bradley, M. Tagging in combinatorial chemistry: the use of colored and fluorescent beads, Chem. Comm. 1997, 8, 735–736.

    Article  Google Scholar 

  79. Needels, M. C; Jones, D. G.; Tate, E. H.; Heinkel, G. L.; Kochersperger, L. M.; Dower, W. J.; Barrett, R. W.; Gallop, M. A. Generation and screening of an oligonucleotide-eneoded synthetic peptide library, Proc. Natl. Acad. Sci. U S A 1993, 90, 10700–10704.

    Article  PubMed  CAS  Google Scholar 

  80. Hakala, H.; Lonnberg, H. Time-resolved fluorescence detection of oligonucleotide hybridization on a single microparticle: covalent immobilization of oligonucleotides and quantitation of a model system, Bioconjug. Chem. 1997, 8, 232–237.

    Article  PubMed  CAS  Google Scholar 

  81. Hakala, H.; Heinonen, P.; Iitia, A.; Lonnberg, H. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes, Bioconjug. Chem. 1997, 8, 378–384.

    Article  PubMed  CAS  Google Scholar 

  82. Van Ness, J.; Kalbfleisch, S.; Petrie, C. R.; Reed, M. W.; Tabone, J. C; Vermeulen, N. M. A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays, Nucleic Acids Res. 1991, 19, 3345–3350.

    Article  PubMed  Google Scholar 

  83. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes., J. Am. Chem. Soc. 1998, 120, 1959–1964.

    Article  CAS  Google Scholar 

  84. Lee, M.; Walt, D. R. A fiber-optic microarray biosensor using aptamers as receptors, Anal. Biochem. 2000, 282, 142–146.

    Article  PubMed  CAS  Google Scholar 

  85. Lin, Y.; Padmapriya, A.; Morden, K. M.; Jayasena, S. D. Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition, Proc. Natl. Acad. Sci. U S A 1995, 92, 11044–11048.

    Article  PubMed  CAS  Google Scholar 

  86. Knight, B. Ricin—a potent homicidal poison, Br. Med. J. 1979, 1, 350–351.

    PubMed  CAS  Google Scholar 

  87. Lord, J. M.; Roberts, L. M.; Robertas, J. D. Ricin: structure, mode of action, and some current applications, Faseb J. 1994, 8, 201–208.

    PubMed  CAS  Google Scholar 

  88. Vitetta, E. S.; Thorpe, P. E.; Uhr, J. W. Immunotoxins: magic bullets or misguided missiles?, Trends Pharmacol. Sci. 1993, 14, 148–154.

    Article  PubMed  CAS  Google Scholar 

  89. Hesselberth, J. R.; Miller, D.; Robertas, J.; Ellington, A. D. In vitro selection of RNA molecules that inhibit the activity of ricin A-chain, J. Biol. Chem. 2000, 275, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  90. Narang, U.; Anderson, G. P.; Ligler, F. S.; Burans, J. Fiber optic-based biosensor for ricin, Biosens. Bioelectron. 1997, 12, 937–945.

    Article  PubMed  CAS  Google Scholar 

  91. Rowe-Taitt, C. A.; Hazzard, J. W.; Hoffman, K. E.; Cras, J. J.; Golden, J. P.; Ligler, F. S. Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor, Biosens. Bioelectron. 2000, 15, 579–589.

    Article  PubMed  CAS  Google Scholar 

  92. Taitt, C. R.; Anderson, G. P.; Lingerfelt, B. M.; Feldstein, M. J.; Ligler, F. S. Nine-analyte detection using an array-based biosensor, Anal. Chem. 2002, 74, 6114–6120.

    Article  PubMed  CAS  Google Scholar 

  93. Delehanty, J. B.; Ligler, F. S. A microarray immunoassay for simultaneous detection of proteins and bacteria, Anal. Chem. 2002, 74, 5681–5687.

    Article  PubMed  CAS  Google Scholar 

  94. Poli, M. A.; Rivera, V. R.; Hewetson, J. F.; Merrill, G. A. Detection of ricin by colorimetric and chemiluminescence ELISA, Toxicon 1994, 32, 1371–1377.

    Article  PubMed  CAS  Google Scholar 

  95. Li, Y.; Nath, N.; Reichert, W. M. Parallel comparison of sandwich and direct label assay protocols on cytokine detection protein arrays, Anal. Chem. 2003, 75, 5274–5281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Cho, E.J., Rajendran, M., Ellington, A.D. (2005). Aptamers as Emerging Probes for Macromolecular Sensing. In: Geddes, C.D., Lakowicz, J.R. (eds) Advanced Concepts in Fluorescence Sensing. Topics in Fluorescence Spectroscopy, vol 10. Springer, Boston, MA. https://doi.org/10.1007/0-387-23647-3_5

Download citation

Publish with us

Policies and ethics