Skip to main content

Amyloid β Degradation: A Challenging Task for Brain Peptidases

  • Chapter
Alzheimer’s Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 38))

Abstract

Amyloid β (Aβ) accumulates in the neuropil and within the walls of cerebral vessels in association with normal aging, dementia or stroke. Aβ is released from its precursor protein as soluble monomeric species yet, under pathological conditions, it self-aggregates to form soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Aβ levels could be lowered by inhibiting its generation or by promoting its clearance by transport or degradation. Here we will summarize recent findings on brain proteases capable of degrading Aβ, with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence supporting a role in the proteolysis of Aβ in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R., Myers, A., Wavrant-DeVrieze, F., Hamshere, M.L., Thomas, H.V., Marshall, H., Compton, D., Spurlock, G., Turic, D., Hoogendoorn, B., Kwon, J.M., Petersen, R.C., Tangalos, E., Norton, J., Morris, J.C., Bullock, R., Liolitsa, D., Lovestone, S., Hardy, J., Goate, A., O’Donovan, M., Williams, J., Owen, M.J., and Jones, L., 2001, Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer’s disease. Hum. Genet. 109: 646–652.

    Article  PubMed  CAS  Google Scholar 

  • Backstrom, J.R., Lim, G.P., Cullen, M.J., and Tokes, Z.A., 1996, Matrix metalloproteinase 9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid β peptide (1-40). J. Neurosci. 16: 7910–7919.

    PubMed  CAS  Google Scholar 

  • Becker, A.B., and Roth, R.A., 1992, An unusual active site identified in a family of zinc metalloendopeptidases. Proc. Natl. Acad. Sci. USA. 89: 3835–3839.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., Yhu, S., McInnis, M.G., Go, R.C., Vekrellis, K., Selkoe, D.J., Saunders, A.J., and Tanzi, R.E., 2000, Evidence for genetic linkage of Alzheimer’s disease to chromosome l0q. Science 290: 2302–2303.

    Article  PubMed  CAS  Google Scholar 

  • Boussaha, M., Hannequin, D., Verpillat, P., Brice, A., Frebourg, T., and Campion, D., 2002, Polymorphisms of insulin degrading enzyme gene are not associated with Alzheimer’s disease. Neurosci. Lett. 329: 121–123.

    Article  PubMed  CAS  Google Scholar 

  • Carpentier, M., Robitaille, Y., DesGroseillers, L., Boileau, G., and Marcinkiewicz, M., 2002, Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61: 849–856.

    PubMed  CAS  Google Scholar 

  • Cataldo, A.M., and Nixon, R.A., 1990, Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc. NatL Acad. Sci. USA. 87: 3861–3865.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.L., and Strickland, S., 1997, Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 91: 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A.Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., and Selkoe, D.J., 1992, Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature. 360: 672–674.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George Hyslop, P., and Selkoe, D.J., 2003, Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3: 67–72.

    Article  Google Scholar 

  • Cook, D.G., Leverenz, J.B., McMillan, P.J., Kulstad, J.J., Ericksen, S., Roth, R.A., Schellenberg, G.D., Jin, L.W., Kovacina, K.S., and Craft, S., 2003, Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4 allele. Am. J. Pathol. 162: 313–319.

    PubMed  CAS  Google Scholar 

  • Coria, F., and Castaño, E.M., 1987, Frangione B. Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease β-protein. Am J. Pathol. 129: 422–428.

    PubMed  CAS  Google Scholar 

  • Davenport, A.P., and Kuc, R.E., 2000, Cellular expression of isoforms of endothelin-converting enzyme-1 (ECE-lc, ECE-lb and ECE-la) and endothelin-converting enzyme-2. J. Cardiovasc. Pharmacol. 36: S12–S14.

    PubMed  CAS  Google Scholar 

  • De Jonghe, C., Zehr, C., Yager, D., Prada, C.M., Younkin, S., Hendriks, L., Van Broeckhoven, C., and Eckman, C.B., 1998, Flemish and Dutch mutations in amyloid precursor protein have different effects on amyloid β secretion. Neurobiol. Dis. 5: 281–286.

    Article  PubMed  Google Scholar 

  • Deb, S., and Gottschall, P.E., 1996, Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with β-amyloid peptides. J. Neurochem. 66: 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Deb, S., Zhang, J.W., and Gottschall, P.E., 1999, Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to β-amyloid peptide. J. Neurosci. Res. 55: 44–53.

    Article  PubMed  CAS  Google Scholar 

  • Dewachter, I., Van Dorpe, J., Smeijers, L., Gilis, M., Kuiperi, C., Laenen, I., Caluwaerts, N., Moechars, D., Checler, F., Vanderstichele, H., and Van Leuven, F., 2000, Aging increased amyloid β peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin 1. J. Neurosci. 20: 6452–6458.

    PubMed  CAS  Google Scholar 

  • D’Orleans-Juste, P., Plante, M., Honore, J.C., Carrier, E., and Labonte, J., 2003, Synthesis and degradation of endothelin-1. Can. J. Physiol. Pharmacol. 81: 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Duckworth, W.C., Bennett, R.G., and Hamel, F.G., 1998, Insulin degradation: progress and potential. Endocr. Rev. 19: 608–624.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, E.A., Reed, D.K., and Eckman, C.B., 2001, Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J. Biol. Chem. 276: 24540–24548.

    Article  PubMed  CAS  Google Scholar 

  • Eckman, E.A., Watson, M., Marlow, L., Sambamurti, K., and Eckman, C.B., 2003, Alzheimer’s disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 278: 2081–2084.

    Article  PubMed  CAS  Google Scholar 

  • Edland, S.D., Wavrant-De Vriese, F, Compton, D., Smith, G.E., Ivnik, R., Boeve, B.F., Tangalos, E.G., and Petersen, R.C., 2003, Insulin degrading enzyme (IDE) genetic variants and risk of Alzheimer’s disease: evidence of effect modification by apolipoprotein E (APOE). Neurosci. Lett. 345: 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner, N., Graff-Radford, N., Younkin, L.H., Eckman, C., Baker, M., Adamson, J., Ronald, J., Blangero, J., Hutton, M., and Younkin, S.G., 2000, Linkage of plasma Aβ42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science. 290: 2303–2304.

    Article  PubMed  CAS  Google Scholar 

  • Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J., and Guenette, S., 2003, Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA. 100: 4162–4167.

    Article  PubMed  CAS  Google Scholar 

  • Frautschy, S.A., Horn, D.L., Sigel, J.J., Harris-White, M.E., Mendoza, J.J., Yang, F., Saido, T.C., and Cole, G.M., 1998, Protease inhibitor coinfusion with amyloid β-protein results in enhanced deposition and toxicity in rat brain. J. Neurosci. 18: 311–8321.

    Google Scholar 

  • Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S., and Glabe, C.G., 1997, Soluble amyloid Aβ-(l–40) exists as a stable dimer at low concentrations. J. Biol. Chem. 272: 21037–21044.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, L., Gouras, G.K., Wang, R., Gross, R.S., Beal, M.F., Greengard, P., and Xu, H., 2001, Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21:2561–2570.

    PubMed  CAS  Google Scholar 

  • Glenner, G.G., and Wong, C.W., 1984, Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122: 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Gupta-Bansal, R., Frederickson, R.C., and Brunden, K.R., 1995, Proteoglycan-mediated inhibition of Aβ proteolysis. A potential cause of senile plaque accumulation. J. Biol. Chem. 270: 18666–18671

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki, H., 1996, Cathepsin D is involved in the clearance of Alzheimer’s β-amyloid protein. FEBS Lett. 396: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Hammad, S.M., Ranganathan, S., Loukinova, E., Twai, W.O., and Argraves, W.S., 1997, Interaction of apolipoprotein J-amyloid β peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid β peptide. J. Biol. Chem. 272: 18644–18649.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, R.E., Laurer, H., Longhi, L., Bales, K.R. Paul, S.M., McIntosh, T.K., and Holtzman, D.M., 2002, Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J. Neurosci. 22: 10083–10087.

    PubMed  CAS  Google Scholar 

  • Hartmann, T., 2001, Cholesterol, A and Alzheimer’s disease. Trends Neurosci. 24: S45–S48.

    Article  PubMed  CAS  Google Scholar 

  • Howell, S., Nalbantoglu, J., and Crine, P., 1995, Neutral endopeptidase can hydrolyze-amyloid β (1-40) but shows no effect on β-amyloid precursor protein metabolism. Peptides. 16: 647–652.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N.P., Gerard, C., Hama, E., Lee, H.J., and Saido, T.C., 2001, Metabolic regulation of brain Aβ by neprilysin. Science 292: 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima-Morishima, M., Lee, H.J., Hama, E., Sekine-Aizawa, Y., and Saido, T.C., 2000, Identification of the major Aβ (1-42) degrading catabolic pathway in brain parenchyma: suppression leads to biochemichal and pathological deposition. Nat. Med. 6: 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, W.L., Montag, A.G., and Rosner, M.R., 1993, Insulin-degrading enzyme is differentially expressed and developmentally regulated in various rat tissues. Endocrinology. 132: 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, Y.M., Beach, T.G., Sue, L.I., Scott, S., Layne, K.J., Kokjohn, T.A., Kalback, W.M., Luehrs, D.C., Vishnivetskaya, T.A., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., Weller, R.O., and Roher, A.E., 2001, The evolution of Aβ peptide burden in the APP23 transgenic mice: implications for Aβ deposition in Alzheimer disease. Mol. Med. 7: 609–618.

    PubMed  CAS  Google Scholar 

  • Kurochkin, I. V., and Goto, S., 1994, Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett. 345: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Ledesma, M.D., Da Silva, J.S., Crassaerts, K., Delacourte, A., De Strooper, B., and Dotti, C.G., 2000, Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO reports 1: 530–535.

    PubMed  CAS  Google Scholar 

  • Liuzzo, J.P., Petanceska, S.S., and Devi, L.A., 1999, Neurotrophic factors regulate cathepsin S in macrophages and microglia: a role in the degradation of myelin basic protein and amyloid β peptide. Mol. Med. 5: 334–343.

    PubMed  CAS  Google Scholar 

  • Marr, R.A., Rockenstein, E., Mukherjee, A., Kindy, M.S., Hersh, L.B., Gage, F.H., Verma, I.M., and Masliah, E., 2003, Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23: 1992–1996.

    PubMed  CAS  Google Scholar 

  • McDermott, J.R., and Gibson, A.M., 1997, Degradation of Alzheimer’s β-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem. Res. 22: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Melchor, J.P., Pawlak, R., and Strickland, S., 2003, The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β degradation and inhibits Aβ-induced neurodegeneration. J. Neurosci. 23: 8867–8871.

    PubMed  CAS  Google Scholar 

  • Miller, B.C., Eckman, E.A., Sambamurti, K., Dobbs, N., Chow, K.M., Eckman, C.B., Hersh, L.B., and Thiele, D.L., 2003, Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. USA. 100: 6221–6226.

    Article  PubMed  CAS  Google Scholar 

  • Miravalle, L., Tokuda, T., Chiarle, R., Giaccone, G., Bugiani, O., Tagliavini, F., Frangione, B., and Ghiso, J., 2000, Substitutions at codon 22 of Alzheimer’s Aβ peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem. 275: 27110–27116.

    PubMed  CAS  Google Scholar 

  • Morelli, L., Llovera, R., Gonzalez, S.A., Affranchino, J.L., Prelli, F., Frangione, B., Ghiso, J., and Castaño, E.M., 2003, Differential degradation of amyloid β genetic variants associated with hereditary dementia or stroke by insulin-degrading enzyme. J. Biol. Chem. 278: 23221–23226.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, L., Llovera, R., Ibendahl, S., and Castaño, E.M., 2002, The degradation of amyloid β as a therapeutic strategy in Alzheimer’s disease and cerebrovascular amyloidoses. Neurochem. Res. 27: 1387–1399.

    Article  PubMed  CAS  Google Scholar 

  • Myers, A., Holmans, P., Marshall, H., Kwon, J., Meyer, D., Ramic, D., Shears, S., Booth, J., DeVrieze, F.W., Crook, R., Hamshere, M., Abraham, R., Tunstall, N., Rice, F., Carry, S., Lillystone, S., Kehoe, P., Rudrasingham, V., Jones, L., Lovestone, S., Perez-Tur, J., Williams, J., Owen, M.J., Hardy, J., and Goate, A.M., 2000. Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290: 2304–2305.

    Article  PubMed  CAS  Google Scholar 

  • Oefner, C., D’Arcy, A., Hennig, M., Winkler, F.K., and Dale, G.E., 2000, Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J. Mol. Biol. 296: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M.A., Bryant-Thomas, T.K., Herbert, D., Pacheco, J., Fabra Garcia, M., Manjon, M., Girones, X., Henry, T.L., Matsubara, E., Zambon, D., Wolozin, B., Sano, M., Cruz-Sanchez, F.F., Thal, L.J., Petanceska, S.S., and Refolo, L.M., 2003, Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology. 61: 199–205.

    PubMed  CAS  Google Scholar 

  • Perez, A., Morelli, L., Cresto, J.C., and Castaño, E.M., 2000, Degradation of soluble amyloid β-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem. Res. 25: 247–255.

    Article  PubMed  CAS  Google Scholar 

  • Prince, J.A., Feuk, L., Gu, H.F., Johansson, B., Gatz, M., Blennow, K., and Brookes, A.J., 2003, Genetic variation in a haplotype block spanning IDE influences Alzheimer disease. Hum. Mutat. 22: 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Rocchi, A., Pellegrini, S., Siciliano, G., and Murri, L., 2003, Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res. Bull. 61: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Roses, A.D., 1997, A model for susceptibility polymorphisms for complex diseases: apolipoprotein E and Alzheimer disease. Neurogenetics. 1:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Safavi, A., Miller, B.C., Cottam, L., and Hersh, L.B., 1996, Identification of γ-endorphin-generating enzyme as insulin-degrading enzyme. Biochemistry 35: 14318–14325.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., Ikeda, K., Haga, S., Allsop, D., and Ishii, T., 1991, A monoclonal antibody to common acute lymphoblastic leukemia antigen immunostains senile plaques in the brains of patients with Alzheimer’ disease. Neurosci. Lett. 121: 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, J.C., De La Baume, S., Malfroy, B., Patey, G., Perdrisot, R., Swerts, J.P., Fournie-Zaluski, M.C., Gacel, G., and Roques, B.P., 1980, “Enkephalinase”, a newly characterized dipeptidyl carboxypeptidase: properties and possible role in enkephalinergic transmission. Intl. J. Neurol. 14: 195–204.

    Google Scholar 

  • Shibata, M., Yamada, S., Kumar, S.R., Calero, M., Bading, J., Frangione, B., Holtzman, D.M., Miller, C.A., Strickland, D.K., Ghiso, J., and Zlokovic, B.V., 2000, Clearance of Alzheimer’s amyloid-β (1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest 106: 1489–1499.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Castaño, E.M., Frangione, B., and Inestrosa, N.C., 1995, The α-helical to β-strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. J. Biol. Chem. 270: 3063–3067.

    Article  PubMed  CAS  Google Scholar 

  • Sudoh, S., Frosch, M.P., and Wolf, B.A., 2002, Differential effects of proteases involved in intracellular degradation of amyloid β-protein between detergent-soluble and insoluble pools in CHO-695 cells. Biochemistry 41: 1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., Cheung, T.T., Cai, X.D., Odaka, A., Otvos, L. Jr., Eckman, C., Golde, T.E., and Younkin, S.G., 1994, An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264: 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A.J., Isaac, R.E., and Coates, D., 2001, The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. BioEssays 23: 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Turner, A.J., and Tanzawa, K., 1997, Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 11: 355–364.

    PubMed  CAS  Google Scholar 

  • Van Nostrand, W.E., Melchor, J.P., Cho, H.S., Greenberg, S.M., and Rebeck, G.W., 2001, Pathogenic effects of D23N Iowa mutant amyloid β-protein. J. Biol. Chem. 276: 32860–32866.

    Article  PubMed  Google Scholar 

  • Van Uden, E., Mallory, M., Veinbergs, I., Alford, M., Rockenstein, E., and Masliah, E., 2002, Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J. Neurosci. 22: 9298–9304.

    PubMed  Google Scholar 

  • Vekrellis, K., Ye, Z., Qiu, W.Q., Walsh, D., Hartley, D., Chesneau, V., Rosner, M.R., and Selkoe, D.J., 2000, Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20: 1657–1665.

    PubMed  CAS  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D. J., 2002, Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Dickson, D.W., Trojanowski, J.Q., and Lee, V.M., 1999, The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158: 328–337.

    Article  PubMed  CAS  Google Scholar 

  • Wijdicks, E.F., and Jack, C.R. Jr., 1993, Intracerebral hemorrhage after fibrinolytic therapy for acute myocardial infarction. Stroke. 24: 554–557.

    PubMed  CAS  Google Scholar 

  • Yasojima, K., Haruhiko, A., McGeer, E.G., and McGeer, P.L., 2001, Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of β-amyloid peptide. Neurosci. Lett. 297: 97–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Morelli, L., Bulloj, A., Leal, M.C., Castaño, E.M. (2005). Amyloid β Degradation: A Challenging Task for Brain Peptidases. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_6

Download citation

Publish with us

Policies and ethics