Skip to main content

Conclusion

These examples of observations of sequences leave more questions than answers but provide intriguing hints that the metabolism of this important group of bacteria is versatile and complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argyle JL, Rapp-Giles BJ, Wall JD. 1992. Plasmid transfer by conjugation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 94:255–62.

    Article  CAS  Google Scholar 

  • Barton LL, editor. 1995. Sulfate-reducing bacteria. New York: Plenum Press.

    Google Scholar 

  • Blanchard L, Marion D, Pollock B, et al. 1993. Overexpression of Desulfovibrio vulgaris Hildenborough cytochrome c 553 in Desulfovibrio desulfuricans G200: evidence of conformational heterogeneity in the oxidized protein by NMR. Eur J Biochem 218:293–301.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Arnon DI. 1990. A reverse KREBS cycle in photosynthesis: consensus at last. Photosyn Res 24:47–53.

    Article  CAS  PubMed  Google Scholar 

  • Castro HF, Williams NH, Ogram A. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9.

    CAS  PubMed  Google Scholar 

  • Chen L, Liu M-Y, LeGall J, et al. 1993b. Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. J Biochem 216:443–8.

    CAS  Google Scholar 

  • Chen L, Liu M-Y, LeGall J, et al. 1993a. Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the “strict anaerobe” Desulfovibrio gigas. Biochem Biophys Res Comm 193:100–5.

    Article  CAS  PubMed  Google Scholar 

  • Cordwell SJ. 1999. Microbial genomes and “missing” enzymes: redefining biochemical pathways. Arch Microbiol 172:269–79.

    Article  CAS  PubMed  Google Scholar 

  • Craig NL. 1991. Tn7: a target site-specific transposon. Mol Microbiol 5:2569–73.

    Article  CAS  PubMed  Google Scholar 

  • Dilling W, Cypionka H. 1990. Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–8.

    CAS  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55: 928–34.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fareleira P, LeGall J, Xavier AV, Santos H. 1997. Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J Bacteriol 179:3972–80.

    CAS  PubMed  Google Scholar 

  • Fu R, Voordouw G. 1997. Target gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology 143:1815–26.

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Voordouw G. 1998. ISD1, an insertion element from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough: structure, transposition, and distribution. Appl Environ Microbiol 63:53–61.

    Google Scholar 

  • Gennis RB, Stewart V. 1996. Respiration. In: Neidhardt FC, Curtiss R III, Ingraham JL, et al. editors. Volume 1, Escherichia coli and Salmonella. 2nd ed. Washington, DC: ASM Press. p 217–61.

    Google Scholar 

  • Hansen TA. 1994. Metabolism of sulfate-reducing prokaryotes. Antonie Leeuwen-hoek 66:165–85.

    Article  CAS  Google Scholar 

  • Keon RG, Fu R, Voordouw G. 1997. Deletion of two downstream genes alters expression of the Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch Microbiol 167:376–83.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Mizugai K, Taniguchi M, et al. 1995. A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c-553 gene in the anaer-obic bacterium, Desulfovibrio vulgaris (Miyazaki F). Microbiol Immunol 39:75–80.

    CAS  PubMed  Google Scholar 

  • LeGall J, Xavier AV. 1996. Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe 2:1–9.

    Article  CAS  Google Scholar 

  • Odom JM, Singleton R Jr, editors. 1993. The sulfate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag

    Google Scholar 

  • Ozawa K, Mogi T, Suzuki M, et al. 1997. Membrane-bound cytochromes in a sulfate-reducing strict anaerobe Desulfovibrio vulgaris Miyazaki F. Anaerobe 3:339–46.

    Article  CAS  PubMed  Google Scholar 

  • Peck HD Jr, LeGall J, editors. 1994. Volume 243, Inorganic microbial sulfur metabolism. Methods in enzymology. San Diego, CA: Academic Press

    Google Scholar 

  • Pollock WBR, Voordouw G. 1994. Molecular biology of c-type cytochromes from Desulfovibrio vulgaris Hildenborough. Biochimie 76:554–60.

    Article  CAS  PubMed  Google Scholar 

  • Pollock WBR, Loutfi M, Bruschi M, et al. 1991. Cloning, sequencing and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovib rio vulgaris Hildenborough. J Bacteriol 173:220–8.

    CAS  PubMed  Google Scholar 

  • Postgate JR. 1984. The sulphate-reducing bacteria. 2nd ed. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Powell B, Mergeay M, Christofi N. 1989. Transfer of broad host-range plasmids to sulphate-reducing bacteria. FEMS Microbiol Lett 59:269–74.

    Article  CAS  Google Scholar 

  • Rapp-Giles BJ, Casalot L, English RS, et al. 2000. Cytochrome c 3 mutants of Desulfovibrio desulfuricans. Appl Environ Microbiol 66:671–7.

    Article  CAS  PubMed  Google Scholar 

  • Ried JL, Collmer A. 1987. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–46.

    Article  CAS  PubMed  Google Scholar 

  • Roth JR, Lawrence JG, Rubenfield M, et al. 1993. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175:3303–16.

    CAS  PubMed  Google Scholar 

  • Rousset M, Casalot L, Rapp-Giles BJ, et al. 1998. New shuttle vectors for the introduction of cloned DNA in Desulfovibrio. Plasmid 39:114–22.

    Article  CAS  PubMed  Google Scholar 

  • Rousset M, Dermoun Z, Chippaux M, Belaich J-P. 1991. Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans. Mol Microbiol 5:1735–40.

    Article  CAS  PubMed  Google Scholar 

  • Santos H, Fareleira P, Xavier AV, et al. 1993. Aerobic metabolism of carbon reserves by the “obligate anaerobe” Desulfovibrio gigas. Biochem Biophys Res Commun 195:551–7.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP. 1992. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–204.

    Article  CAS  PubMed  Google Scholar 

  • Simon R. 1984. High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–20.

    Article  CAS  PubMed  Google Scholar 

  • Stams FJM, Veenhuis M, Weenk GH, Hansen TA. 1983. Occurrence of poly glucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136:54–9.

    Article  CAS  Google Scholar 

  • van den Berg WAM, Stokkermans JPWG, van Dongen WMAM. 1989. Development of a plasmid transfer system for the anaerobic sulphate reducer, Desulfovibrio vulgaris. J Biotechnol 12:173–84.

    Article  Google Scholar 

  • van Dongen WMAM. 1995. Molecular biology of redox-active metal proteins from Desulfovibrio. In: Barton LL, editor. Sulfate-reducing bacteria. New York: Plenum Press. p 185–215.

    Google Scholar 

  • van Dongen WMAM, Stokkermans JPWG, van den Berg WAM. 1994. Genetic manipulation of Desulfovibrio. Methods Enzymol 243:319–30.

    Article  CAS  Google Scholar 

  • van Niel EWJ, Gottschal JC. 1998. Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–9.

    PubMed  Google Scholar 

  • Vertes AA, Asai Y, Kobayashi M, et al. 1994. Transposon mutagenesis of coryneform bacteria. Mol Gen Genet 245:397–405.

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G. 1993. Molecular biology of the sulfate-reducing bacteria. In: Odom JM, Singleton R Jr, editors. The sulfate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag. p 88–130.

    Google Scholar 

  • Voordouw G. 1995. The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–9.

    CAS  PubMed  Google Scholar 

  • Voordouw JK, Voordouw G. 1998. Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 64:2882–7.

    CAS  PubMed  Google Scholar 

  • Voordouw G, Pollock WBR, Bruschi M, et al. 1990. Functional expression of Desulfovibrio vulgaris Hildenborough cytochrome c 3 in Desulfovibrio desulfuricans following conjugational gene transfer from Escherichia coli. J Bacteriol 172: 6122–6.

    CAS  PubMed  Google Scholar 

  • Wall JD. 1993. Genetics of the sulfate-reducing bacteria. In: Odom JM, Singleton R Jr, editors. The sulfate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag. p 77–87.

    Google Scholar 

  • Wall JD, Murnan T, Argyle J, et al. 1996. Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7. Appl Environ Microbiol 62:3762–7.

    CAS  PubMed  Google Scholar 

  • Wall JD, Rapp-Giles BJ, Rousset M. 1993. Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. J Bacteriol 175:4121–8.

    CAS  PubMed  Google Scholar 

  • Widdel F. 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB, editor. Biology of anaerobic microorganisms. New York: Wiley-Interscience. p 469–585.

    Google Scholar 

  • Wolk CP, Cai Y, Panoff J-M. 1991. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA 88:5355–9.

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Wall, J.D., Hemme, C.L., Rapp-Giles, B., Ringbauer, J.A., Casalot, L., Giblin, T. (2003). Genes and Genetic Manipulations of Desulfovibrio . In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics