Skip to main content

Algal Toxicity Tests for Environmental Risk Assessments of Metals

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 178))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams N, Dobbs AJ (1984) A comparison of results from 2 test methods for assessing the toxicity of aminotriazole to Selenastrum capricornutum. Chemosphere 13:965–971.

    CAS  Google Scholar 

  • Adams N, Goulding KH, Dobbs AJ (1985) Toxicity of eight water-soluble organic chemicals to Selenastrum capricornutum: a study of methods for calculating toxic values using different growth parameters. Arch Environ Contam Toxicol 14:333–345.

    CAS  Google Scholar 

  • Ahluwalia AS, Kaur M (1988) Effect of some heavy metal compounds on growth and differentiation in a blue-green and a green alga. Microbios 53:37–45.

    Google Scholar 

  • Aitchison PA, Butt OS (1973) The relation between the synthesis of inorganic polyphosphate and phosphate uptake by Chlorella vulgaris. J Exp Bot 24:495–510.

    Google Scholar 

  • Allen HE, Hall RH, Brisbin TD (1980) Metal speciation: effects on aquatic toxicology. Environ Sci Technol 14:441.

    PubMed  CAS  Google Scholar 

  • Anderson MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature (Lond) 276:70–71.

    CAS  Google Scholar 

  • APHA (1985) Standard Methods for the Examination of Water and Wastewater, 16th Ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • ASTM (1990) New Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • ASTM (1993) Standard Practice for Algal Growth Potential Testing with Selenastrum capricornutum. D 3978-80. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Bartlett L, Rabe FW (1974) Effects of copper, zinc and cadmium on Selenastrum capricornutum. Water Res 8:179–185.

    CAS  Google Scholar 

  • Bates SS, Tessier A, Campbell PGC, Buffle J (1982) Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol 18:521–529.

    CAS  Google Scholar 

  • Bates SS, Tessier A, Campbell PGC, Letourneau M (1985) Zinc-phosphorus interactions and variation in zinc accumulation during growth of Chlamydomonas variabilis (Chlorophyceae) in batch cultures. Can J Fish Aquat Sci 40:895–904.

    Google Scholar 

  • Benenati F (1990) Keynote address: Plants—keystone to risk assessment. In: Wang W, Gorsuch JW, Lower WR (eds) Plants for Toxicity Assessment. STP 1091. American Society for Testing and Materials, Philadelphia, PA, pp 5–13.

    Google Scholar 

  • Blaise C, Legault R, Bermingham N, Van Coillie R, Vasseur P (1986) A simple microplate algal assay technique for aquatic toxicity assessment. Toxic Assess 1:261–281.

    CAS  Google Scholar 

  • Blanck H, Wallin G, Wangberg S-A (1984) Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol Environ Saf 8:339–351.

    PubMed  CAS  Google Scholar 

  • Bold HC, Wynne MJ (1985) Introduction to the Algae, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Bringmann G, KuÜhn R (1978) Testing of substances for their toxicity threshold: model organisms Microcystis aeruginosa and Scenedesmus quadricauda. Mitt Int Verein Limnol 21:275–284.

    CAS  Google Scholar 

  • Butler M, Hawkew AEJ, Young MM (1980) Copper tolerance in the green alga Chlorella vulgaris. Plant Cell Environ 3:119–126.

    CAS  Google Scholar 

  • Campbell PG, Stokes PM (1985) Acidification and toxicity of metal to aquatic biota. Can J Fish Aquat Sci 42:2034–2049.

    CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, pp 45–102.

    Google Scholar 

  • Chapman GA (1985) Acclimation as a factor influencing metal criteria. In: Bahner R, Hansen D (eds) Aquatic Toxicology and Hazard Assessment, 8th Symposium. STP 894. American Society for Testing and Materials, Philadelphia, PA, pp 119–136.

    Google Scholar 

  • Chen CY, Lin KC (1997) Optimization and performance evaluation of the continuous algal toxicity test. Environ Toxicol Chem 16:1337–1344.

    CAS  Google Scholar 

  • Chiaudani G, Vighi M (1978) The use of Selenastrum capricornutum batch cultures in toxicity studies. Mitt Int Verein Limnol 21:316.

    CAS  Google Scholar 

  • Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae. J Ecol 30:284–325.

    CAS  Google Scholar 

  • Coleman RD, Coleman RL, Rice EL (1971) Zinc and cobalt bioconcentration and toxicity in selected algal species. Bot Gaz 132:102–109.

    CAS  Google Scholar 

  • Conway HL, Williams SC (1979) Sorption of Cd and its effect on growth and the utilization tion of inorganic carbon and phosphorus of two freshwater diatoms. J Fish Res Board Can 35:286–294.

    Google Scholar 

  • Crist RJ, Oberholser K, Schwartz D, Marzoff J, Ryder D (1988) Interactions of metals and protons with algae. Environ Sci Technol 22:755–760.

    PubMed  CAS  Google Scholar 

  • Davies AG (1978) Pollution studies with marine plankton. Mar Biol 15:381–508.

    CAS  Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Heijerick DG, Allen HE, Tack F, Janssen CR (2003). The effects of dissolved organic matter, pH and water hardness on copper toxicity to the green alga Pseudokirchneriella subcapitata: development and field validation of a predictive model. Environ Toxicol Chem in press.

    Google Scholar 

  • EC 1996. Technical Guidance Document in support of commission directive 93/67/EEC on risk asessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances—Part II, European Commission, Luxemburg.

    Google Scholar 

  • EEC: European Economic Community (1987) Methods for the determination of ecotoxicity: algal inhibition test. EEC Directive, 79/831, Annex V, Part C.

    Google Scholar 

  • Eloranta V (1982) Effect of slimecide Fennosan F50 on algal growth in different test media. Pap Puu 64:129–135.

    CAS  Google Scholar 

  • Errécalde O, Seidl M, Campbell PGC (1998) Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum. Water Res 32:419–429.

    Google Scholar 

  • Fitzgerald GP (1964) Factors in testing and application of algicides. Appl Microbiol 12: 247–253.

    PubMed  CAS  Google Scholar 

  • Fitzgerald GP, Faust SL (1963) Factors affecting the algicidal and algistatic properties of copper. Appl Microbiol 11:345–351.

    PubMed  CAS  Google Scholar 

  • Fletcher RL (1991) Marine microalgae as bioassay test organisms. In: Abel PD, Aviak V (eds) Ecotoxicology and the Marine Environment. Horwood, New York, pp 111–131.

    Google Scholar 

  • Foster PL (1977) Copper exclusion as a mechanism of heavy metal tolerance in a green alga. Nature (Lond) 269:322–323

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Markich SJ, Lim RP (2000a) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.) Aquat Toxicol 48:275–289.

    PubMed  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Apte SC, Lim RP (2000b) The importance of cell density in algal bioassays. Poster presentation, 21–25 May, 2000. 10th SETAC-Europe Conference, Brighton, UK.

    Google Scholar 

  • Gaur JP, Singh AK (1991) Regulatory influence of light and temperature on petroleum toxicity to Anabaena doliolum. Environ Toxicol Water Qual 6:342–359.

    Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202.

    CAS  Google Scholar 

  • Greene J, Peterson SA, Parrish L, Nimmo D (1991) Zinc sensitivity of Selenastrum capricornutum in algal assay medium with various EDTA concentrations. Can Tech Rep Fish Aquat Sci, 1774:252–254.

    Google Scholar 

  • Greeson PE (1982) An annotated key to the identification of commonly occuring and dominant genera of algae observed in the phytoplankton of the U.S. Geological Survey Water Supply Paper 2079. U.S. Government Printing Office, Washington DC.

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatin: the principal heavy metal complexing peptides of higher plants. Science 230:674–676.

    PubMed  CAS  Google Scholar 

  • Guilard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedd and Detonula confervacae (Cleve) Gran. Can J Microbiol 8:229–239.

    Google Scholar 

  • Hall J, Healey FP, Robinson GGC (1989a) The interaction of chronic copper toxicity with nutrient limitation in two chlorophytes in batch culture. Aquat Toxicol 14:1–14.

    CAS  Google Scholar 

  • Hall J, Healey FP, Robinson GGC (1989b) The interaction of chronic copper toxicity with nutrient limitation in chemostat cultures of Chlorella. Aquat Toxicol 14:15–26.

    CAS  Google Scholar 

  • Halling-Sorensen B, Nyholm N, Baun A (1996) Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemo-sphere 32:1513–1526.

    CAS  Google Scholar 

  • Hanstveit AO (1982) Evaluation of the results of the third ISO-interlaboratory study with an algal toxicity test. ISO/TC 147/SC 5/WG 5. Nederlands Normalisatie Instituut, Delft, The Netherlands.

    Google Scholar 

  • Harding JPC, Whittton BA (1977) Environmental factors reducing the toxicity of zinc to Stigeoclonium tenue. Br Phycol J 12:17–21.

    Google Scholar 

  • Hargreaves JW, Whitton BA (1976) Effect of pH on tolerance of Hormidium rivulare to zinc and copper. Oecologica (Berl) 26:235–243.

    Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16:28–35.

    Google Scholar 

  • Hawkins PR, Griffiths DJ (1982) Uptake and retention of copper by four species of marine phytoplankton. Bot Mar 25:551.

    CAS  Google Scholar 

  • Heijerick DG, De Schamphelaere KAC, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C 133:207–218, (in press)

    CAS  Google Scholar 

  • Hindak F (1990) Pseudokirchneriella subcapitata Korshikov, F-1990. Biol Pr 5:209.

    Google Scholar 

  • Holst RW, Ellwanger TC (1982) Pesticide Assessment Guidelines, Subdivision J. Hazard Evaluation: Nontarget Plants. EPA-54019-82-2020. USEPA, Washington, DC.

    Google Scholar 

  • Hörnström E (1990) Toxicity test with algae—a discussion of the batch method. Ecotoxicol Environ Saf 20:343–353.

    PubMed  Google Scholar 

  • Howe G, Merchant S (1992) Heavy metal activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol 98:127–136.

    PubMed  CAS  Google Scholar 

  • ISO International Organization for Standardization (1987) Water Quality: Algal Growth Inhibition Test. Draft International Standard ISO/DIS 8692. ISO, Geneva, Switzerland.

    Google Scholar 

  • Jackson GA, Morgan JJ (1978) Trace metal-chelator interactions and phytoplankton growth in seawater media: theoretical analysis and comparison with reported observations. Limnol Oceanogr 23:268–282.

    CAS  Google Scholar 

  • Janssen Pharmaceutica (1993a) The acute toxicity of cadmium on the growth of the unicellular green alga Selenastrum capricornutum. Final Environ Assess Rep. Rep AASc/0013. Janssen Pharmaceutica, Beerse, Belgium.

    Google Scholar 

  • Janssen Pharmaceutica (1993b) The acute toxicity of cadmiumoxide on the growth of the unicellular green alga Selenastrum capricornutum. Final Environ Assess Rep. Rep AASc/0012. Janssen Pharmaceutica, Beerse, Belgium.

    Google Scholar 

  • Jensen A, Rystad B (1974) Heavy metal tolerance of marine phytoplankton. I. The tolerance of three algal species to zinc in coastal sea water. J Exp Mar Biol Ecol 15: 145–157.

    CAS  Google Scholar 

  • Jouany JM, Ferard JF, Vasseur P, Gea J, Truhaut R, Rast C (1983) Interest of dynamic tests in acute ecotoxicity assessment of algae. Ecotoxicol Environ Saf 7:216–228.

    PubMed  CAS  Google Scholar 

  • Källqvist T (1982) Toksisitets tester med alger. In: Laake M (ed) Okotoksikologiske Metoder for akvatisk Miljo. Nordic Cooperative Organization for Applied Research, Helsinki, Finland.

    Google Scholar 

  • Källqvist T, Ormerod K, Sortkjaer O (1980) Ring-test med metoder for mikroorganismer. Report No. 15. Ecotoxicological Methods for Aquatic Environments. Nordic Cooperative Organization for Applied Research, Helsinki, Finland.

    Google Scholar 

  • Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as “Better” buffers covering the range of pH 3–11. Temperature dependence of their acid dissociation constants. Anal Chem 71:3140–3144.

    PubMed  CAS  Google Scholar 

  • Klaine SJ, Lewis MA (1994) Algal and plant toxicity testing. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of Ecotoxicology. Lewis, Boca Raton, FL pp 163–184.

    Google Scholar 

  • Klaine SJ, Ward CH (1983) Growth-optimized algal bioassays for toxicity evaluation. Environ Toxicol Chem 2:245–249.

    CAS  Google Scholar 

  • Klass E, Rowe DW, Massaro EJ (1974) The effect of Cd on poulation growth of the green alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 12:442–445.

    PubMed  CAS  Google Scholar 

  • Klerks PL, Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Pollut 45:173–205.

    PubMed  CAS  Google Scholar 

  • Kosakowska A, Falkowski L, Lewandowska J (1988) Effects of amino acids on the toxicity of heavy metals to phytoplankton. Bull Environ Contam Toxicol 40:532–538.

    PubMed  CAS  Google Scholar 

  • Kühn R, Pattard N (1990) Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test. Water Res 24:31–38.

    Google Scholar 

  • Kuwabara JS (1985) Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (Chlorophyta). Environ Sci Technol 19:417–421.

    PubMed  CAS  Google Scholar 

  • Kuwabara JS, Leland HV (1986) Adaptation of Selenastrum capricornutum (Chlorophyceae) to copper. Environ Toxicol Chem 5:197–203.

    CAS  Google Scholar 

  • Lawrence SG, Holoka MH, Hamilton RD (1989) Effects of cadmium on a microbial food chain, Chlamydomonas reinhardtii and Tetrahymena vorax. Sci Total Environ 87/88:381–395.

    Google Scholar 

  • Lederman TC, Rhee G-Y (1982) Influence of hexachlorobiphenyl in Great Lakes phytoplankton in continuous culture. Can J Fish Aquat Sci 39:388–394.

    CAS  Google Scholar 

  • Leischman AA, Greene JC, Miller WE (1979) Bibliography of literature pertaining to the genus Selenastrum. EPA-600/9-79-021. USEPA, Corvallis, OR.

    Google Scholar 

  • Les A, Walker RW (1984) Toxicity and binding of copper, zinc and cadmium by the blue-green alga, Croococcus paris. Water Air Soil Pollut 23:129–139.

    CAS  Google Scholar 

  • Lewis MA (1990) Are laboratory-derived toxicity data for freshwater alga worth the effort? Environ Toxicol Chem 9:1279–1284.

    CAS  Google Scholar 

  • Lewis MA (1995) Algae and vascular plant tests. In: Rand GM (ed) Fundamentals of Aquatic Toxicology, 2nd Ed. Taylor and Francis, Washington, DC, pp 135–171.

    Google Scholar 

  • Lewis MA, Hamm BG (1986) Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory field comparison. Water Res 20:1575–1582.

    CAS  Google Scholar 

  • Li WKW (1979) Cellular composition and physiological characteristics of the diatom Thalassiosira weissflogii adapted to cadmium stress. Mar Biol 35:171–180.

    Google Scholar 

  • Lin KC, Lin CI, Chen CY (1996) The effect of limiting nutrient on metal toxicity to Selenastrum capricornutum. Toxicol Environ Chem 56:47–61.

    CAS  Google Scholar 

  • LISEC (1997) Effect of red seal zinc oxide on the growth of Selenastrum capricornutum. Study WE-06-142. LISEC, Genk, Belgium.

    Google Scholar 

  • LISEC (1998a) Alga, growth inhibition test effect of cadmium on the growth of Selenastrum capricornutum. Draft report. LISEC, Genk, Belgium.

    Google Scholar 

  • LISEC (1998b) Alga, growth inhibition test effect of cadmium oxide on the growth of Selenastrum capricornutum. Draft report. LISEC, Genk, Belgium, 22 p.

    Google Scholar 

  • Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effect of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: the influence of cell wall and pH. Arch Environ Contam Toxicol 27:454–458.

    CAS  Google Scholar 

  • Maeda S, Nizoguchi M, Ohki A, Takeshita T (1990) Bioaccumulation of zinc and cadmium in freshwater alga, Chlorella vulgaris. Part I. Toxicity and accumulation. Chemosphere 21:953–963.

    CAS  Google Scholar 

  • Manahan SE, Smith MJ (1973) Copper micronutrient requirement for algae. Environ Sci Technol 7:829.

    CAS  Google Scholar 

  • Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem 17:1091–1098.

    CAS  Google Scholar 

  • Meijer CLC (1972) The effects of phosphate on the toxicity of copper for an alga (Chlamydomonas sp.). TNO 27:468–473.

    CAS  Google Scholar 

  • Miller WE, Greene JC, Shiroyama T (1978) The Selenastrum capricornutum Printz algal assay bottle test: experimental design, application, and data interpretation protocol. EPA-600/9-78-018. USEPA, Corvallis, OR.

    Google Scholar 

  • Millington LA, Goulding KH, Adams N (1988) The influence of growth medium composition on the toxicity of chemicals to algae. Water Res 22:1593–1597.

    CAS  Google Scholar 

  • Monahan JJ (1973) Lead inhibition of Hormotila blennista (Chlorophyceae, Chlorococcales). Phycologia 12:247–255.

    CAS  Google Scholar 

  • Morel FMM, Westall JC, Reuter JG, Chaplick JP (1975) Description of the algal growth media Aquil and Fraquil. R.M. Parsons Lab Tech Note 16. Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Morel FMM, Reuter JG, Anderson DM, Guillard RRL (1979) Aquil: a chemically defined phytoplankton culture medium for trace metal studies. J Phycol 15:135–141.

    CAS  Google Scholar 

  • Muyssen BTA, Janssen CR (2001) Zinc acclimation and its effects on the zinc tolerance of Raphidocelis subcapitata and Chlorella vulgaris in laboratory experiments. Chemosphere 45:507–514.

    PubMed  CAS  Google Scholar 

  • Nalewajko C, Olaveson MM (1998) Ecophysiological considerations in microalgal toxicity tests. In: Wells PG, Lee K, Blaise C (eds) Microscale Testing in Aquatic Toxicology: Advances, Techniques and Practice. CRC Press, Boca Raton, FL, pp. 289–309.

    Google Scholar 

  • Nyholm N (1982) Evaluation of batch culture algal toxicity tests, with special reference to the proposed ISO draft method. ISO/TC 147/SC5/WG 5 N 70. Nederlands Normalisatie Instituut, Delft, The Netherlands.

    Google Scholar 

  • Nyholm N (1985) Response variable in algal growth inhibition tests—biomass or growth rate? Water Res 19:273–279.

    Google Scholar 

  • Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol 8:689–703.

    CAS  Google Scholar 

  • OECD (1984) Alga growth inhibition test. Test Guideline No. 201. OECD Guidelines for Testing of Chemicals. Organization for Economic Cooperation and Development, Paris.

    Google Scholar 

  • Parent L, Campbell PGC (1994) Aluminium bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water. Environ Toxicol Chem 13:587–598.

    CAS  Google Scholar 

  • Parrish PR (1985) Acute toxicity tests. In: Rand GM, Petrocelli SR (eds) Fundamentals of Aquatic Toxicology. Hemisphere, Washington, DC.

    Google Scholar 

  • Petersen R (1982) Influence of copper and zinc on the growth of a freshwater alga Scenedesmus quadricauda—the significance of chemical speciation. Environ Sci Technol 16:443.

    CAS  Google Scholar 

  • Peterson HF, Healey FP (1985) Comparative pH dependent metal inhibition of nutrient uptake by Scenedesmus quadricauda (Chlorophyceae). J Phycol 21:217.

    CAS  Google Scholar 

  • Peterson HF, Healey FP, Wagemann R (1984) Metal toxicity to algae: a highly pH dependent phenomenon. Can J Fish Aquat Sci 41:974–979.

    CAS  Google Scholar 

  • Peterson HG (1991) Toxicity testing using a chemostat-grown green alga, Selenastrum capricornutum. In: Gorsuch JW, Lower WR, Wang W, Lewis Ma (eds) Plants for Toxicity Assessment. ASTM, Philadelphia, PA, pp 107–117.

    Google Scholar 

  • Pettersson JA, Kunst L, Bergman B, Roomans GM (1985) Accumulation of aluminium by Anabaena cylindrica into polyphosphate granules and cell walls; an X-ray energy dispersive microanalysis study. J Gen Microbiol 131:2545–2548.

    CAS  Google Scholar 

  • Price NM, Harrison GI, Hering JG, Hudson RJ, Nirel PVM, Palenik B, Morel FMM (1991) Preparation and chemistry of the artificial algal culture medium Aquil. Biol Oceanogr 6:443–461.

    Google Scholar 

  • Rai L, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56: 99–151.

    CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86.

    PubMed  CAS  Google Scholar 

  • Rhee G-Y (1972) Competition between an alga and an aquatic bacterium for phosphate. Limnol Oceanogr 17:505–512.

    CAS  Google Scholar 

  • Rhee G-Y (1973) A continuous culture study of phophate uptake, growth rate and polyphosphate in Scenedesmus sp. J Phycol 9:495–506.

    CAS  Google Scholar 

  • Riemer DN (1984) Introduction to Freshwater Vegetation. AVI, Westport, CT.

    Google Scholar 

  • Roberts MH, Warinner JE, Tsai CF, Wright D, Cronin LE (1982) Comparison of estuarine species sensitivities to three toxicants. Arch Environ Contam Toxicol 11:681–692.

    PubMed  CAS  Google Scholar 

  • Rosko JJ, Rachlin JW (1977) The effect of cadmium, copper, mercury, zinc and lead on cell division and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Torrey Bot Club 104:226–233.

    CAS  Google Scholar 

  • Sanders JG (1979) Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae) J Phycol 15:424–428.

    CAS  Google Scholar 

  • Say PJ, Whitton BA (1977) Influence of zinc on lotic plants. II. Environmental effects on toxicity of zinc to Hormidium rivulare. Freshw Biol 7:357–376.

    CAS  Google Scholar 

  • Say PJ, Diaz BM, Whitton BA (1977) Influence of zinc on lotic plants. I. Tolerance of Hormidium species to zinc. Freshw Biol 7:357–376.

    CAS  Google Scholar 

  • Schenck RC, Tessier A, Campbell PGC (1988) The effect of pH on iron and manganese uptake by a green alga. Limnol Oceanogr 33:538.

    CAS  Google Scholar 

  • Sedlacek J, Källqvist T, Gjessing E (1983) Effect of aquatic humus on uptake and toxicity of cadmium to Selenastrum capricornutum Printz. In: Christman RF, Gjessing E (eds) Aquatic and Terrestrial Humic Materials. Ann Arbor Science, Ann Arbor, MI, pp 495–516.

    Google Scholar 

  • Silverberg BA, Stokes PM, Ferstenberg LB (1976) Intranuclear complexes in a coppertolerant green alga. J Cell Biol 69:210–214.

    PubMed  CAS  Google Scholar 

  • Smith PD, Brockway DL, Stancil FE Jr (1987) Effect of hardness, alkalinity and pH on the toxicity of pentachlorophenol to Selenastrum capricornutum (Printz). Environ Toxicol Chem 6:891–900.

    CAS  Google Scholar 

  • Soldo D, Behra R (2000) Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol 47:181–189.

    CAS  Google Scholar 

  • Spencer DF, Nichols LH (1983) Free nickel ion inhibits growth of two species of green algae. Environ Pollut A31:97.

    Google Scholar 

  • Starodub ME, Wong PTS, Mayfield CI (1987) Short term and long term studies on individual and combined toxicities of copper, zinc and leadc to Scenedesmus quadricauda. Sci Total Environ 63:101–110.

    CAS  Google Scholar 

  • Stauber JL, Florence TM (1989) The effect of culture medium on metal toxicity to the marine diatom Nitzschia closterium and the freshwater green alga Chlorella pyrenoidosa. Water Res 23:907–911.

    CAS  Google Scholar 

  • Steeman-Nielsen E, Kamp-Nielsen L (1970) Influence of deleterious concentrations of copper on the growth of Chlorella pyrenoidosa. Physiol Plant 27:239–242.

    Google Scholar 

  • Stein JR (1973) Handbook of Phycological Methods. Cambridge University Press, New York.

    Google Scholar 

  • Stockner JG, Antia NJ (1976) Phytoplankton adaptation to environmental stresses from toxicants, nutrients and pollutants—a warning. J Fish Res Board Can 33:2089–2096.

    Google Scholar 

  • Stokes PM, Dreier SI (1981) Copper requirement of a copper-tolerant isolate of Scenedesmus and the effect of copper depletion on tolerance. Can J Bot 59:1817–1823.

    CAS  Google Scholar 

  • Thursby GB, Steele RL (1995) Sexual reproduction tests with marine seaweeds. In: Rand GM (ed) Fundamentals of Aquatic Toxicology, 2nd Ed. Taylor and Francis, Washington, DC, pp 171–188.

    Google Scholar 

  • Thursby GB, Anderson FB, Walsh GE, Steele RL (1993) A review of the current status of marine algal testing in the United States. In: Landis WG, Hughes JS, Lewis MA (eds) First Symposium on Environmental Toxicology and Risk Assessment. ASTM STP 1179. American Society for Testing and Materials, Philadelphia, PA, pp 362–377.

    Google Scholar 

  • Tipping E (1994) WHAM—a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comp Geosci 20:973–1023.

    CAS  Google Scholar 

  • Turbak SC, Olson SB, McFeters GA (1986) Comparison of algal assay systems for detecting waterborne herbicides and metals. Water Res 20:91–96.

    CAS  Google Scholar 

  • Twiss MR, Nalewajko C (1992) Influence of phosphorus-nutrition on copper toxicity to 3 strains of Scenedesmus acutus (Chlorophyceae). J Phycol 28:291–298.

    CAS  Google Scholar 

  • Ukeles R (1976) Cultivation of plants. In: Kinne O (ed) Marine Ecology, vol III. Wiley, New York, pp 367–529.

    Google Scholar 

  • USEPA (1971) Algal Assay Procedure Bottle Test. National Eutrophication Research Program. Pacific Northwest Environmental Research Laboratory, Corvallis, OR.

    Google Scholar 

  • USEPA (1978) The Selenastrum capricornutum Printz Algal Assay Bottle Test. EPA-600/9-78-018. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1980) Ambient Water Quality Criteria for Zinc. EPA 440/5-80-079. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1985) Toxic Substances Control Act Test Guidelines; final rules. Fed Reg 50, 797. 1050, 797.1075, 797.1060.

    Google Scholar 

  • USEPA (1991) Methods for Aquatic Toxicity Identification Evaluations. Phase I Toxicity Characteristation Procedures (Second Edition). EPA/600/6-91/003. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Van Ginneken I (1994) The effect of zinc oxide on the growth of the unicellular alga Selenastrum capricornutum. Report AFBr/0024. Janssen Pharmaceautica N.V., Beerse, Belgium.

    Google Scholar 

  • Van Woensel M (1994) The effect of zinc powder on the growth of the unicellular alga Selenastrum capricornutum. Report AASc/0021. Janssen Pharmaceutica N.V., Beerse, Belgium.

    Google Scholar 

  • Vasseur P, Pandard P (1988) Influence of some experimental factors on metal toxicity to Selenastrum capricornutum. Toxic Assess 3:331–343.

    CAS  Google Scholar 

  • Vocke RW, Sears KL, O’Toole JJ, Wildman RB (1980) Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants. Water Res 14:141–150.

    CAS  Google Scholar 

  • Walsh GE (1982) Algal Bioassay of Industrial and Energy Process Effluents. EPA 600/ D-82-141. USEPA, Gulf Breeze, FL.

    Google Scholar 

  • Walsh GE (1988) Principles of toxicity testing with marine unicellular algae. Environ Toxicol Chem 7:979–987.

    CAS  Google Scholar 

  • Walsh GE, Deans CH, McLaughlin LL (1987a) Comparison of the EC50s of algal toxicity tests calculated by four methods. Environ Toxicol Chem 6:767–770.

    CAS  Google Scholar 

  • Walsh GE, Yoder MJ, McLaughlin LL, Lores EM (1987b) Responses of marine unicellular algae to brominated organic compounds in six growth media. Ecotoxicol Environ Saf 14:215–222.

    PubMed  CAS  Google Scholar 

  • Wangberg S, Blanck H (1988) Multivariate patterns of algal sensitivity to chemicals in relation to phylogeny. Ecotoxicol Environ Saf 16:72–82.

    PubMed  CAS  Google Scholar 

  • Weber C, Horning WB, Klemm DJ, Neiheisel TW, Lewis PA, Robinson E, Menkendick JR, Kessler FA (1988) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. EPA 600/4-876/028. Environmental Montoring Support Laboratory, Cincinnati, OH.

    Google Scholar 

  • Weber CI, Peltier WH, Norberg-King TJ, Horning WB, Kessler FA, Menkendick JR, Neiheisel TW, Lewis PA, Klemm DJ, Pickering QH, Robinson EL, Lazorchak JL, Wymer LJ, Freyberg RW (1989) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. USEPA 600/4-89/001. Environmental Monitoring Systems Laboratory, Cincinnati, OH.

    Google Scholar 

  • Wolterbeek HT, Viragh A, Sloof JE, Bolier G, van der Veer B, de Kok J (1995) On the uptake and release of zinc (65Zn) in the growing alga Selenastrum capricornutum Printz. Environ Pollut 88:85–90.

    PubMed  CAS  Google Scholar 

  • Wong PTS, Burnison G, Chau YK (1979) Cadmium toxicity to freshwater algae. Bull Environ Contam Toxicol 23:487–490.

    PubMed  CAS  Google Scholar 

  • Wren MJ, McCaroll D (1990) A simple and sensitive bioassay for the detection of toxic materials using a unicellular green alga. Environ Pollut 64:87–91.

    PubMed  CAS  Google Scholar 

  • Xue H-B, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 7:917–926.

    Google Scholar 

  • Yamane AN, Okada M, Sudo R (1984) The growth inhibition of plankton algae due to surfactants used in washing agents. Water Res 18:1101–1105.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Communicated by George W. Ware.

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Janssen, C.R., Heijerick, D.G. (2003). Algal Toxicity Tests for Environmental Risk Assessments of Metals. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-21728-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21728-2_2

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00441-9

  • Online ISBN: 978-0-387-21728-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics