Skip to main content

Quantum Monte Carlo Methods for Strongly Correlated Electron Systems

  • Chapter
Theoretical Methods for Strongly Correlated Electrons

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

We review some of the recent development in quantum Monte Carlo (QMC) methods for models of strongly correlated electron systems. QMC is a promising general theoretical tool to study many-body systems, and has been widely applied in areas spanning condensed-matter, high-energy, and nuclear physics. Recent progress has included two new methods, the ground-state and finite-temperature constrained path Monte Carlo methods. These methods significantly improve the capability of numerical approaches to lattice models of correlated electron systems. They allow calculations without any decay of the sign, making possible calculations for large system sizes and low temperatures. The methods are approximate. Benchmark calculations show that accurate results on energy and correlation functions can be obtained. This chapter gives a pedagogical introduction to quantum Monte Carlo, with a focus on the constrained path Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. K.E. Schmidt and M.H. Kalos, in Applications of the Monte Carlo Method in Statistical Physics, ed. K. Binder (Springer Verlag, Heidelberg, 1984).

    Google Scholar 

  2. E.Y. Loh Jr., J.E. Gubernatis, R.T. Scalettar, S.R. White, D.J. Scalapino, and R.L. Sugar, Phys. Rev. B 41, 9301 (1990).

    Article  ADS  Google Scholar 

  3. S. Zhang, in Quantum Monte Carlo Methods in Physics and Chemistry, eds. M.P. Nightingale and C.J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, Dordrecht, 1999).

    Google Scholar 

  4. S. Zhang, J. Carlson, and J.E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997).

    Article  ADS  Google Scholar 

  5. S. Zhang, J. Carlson, and J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995); Phys. Rev. B 55, 7464 (1997).

    Article  ADS  Google Scholar 

  6. J. Carlson, J.E. Gubernatis, G. Ortiz, and S. Zhang, Phys. Rev. B, 59, 12788 (1999).

    Article  ADS  Google Scholar 

  7. S. Zhang, Phys. Rev. Lett. 83, 2777 (1999); Comp. Phys. Comm. 127, 150 (2000).

    Article  ADS  Google Scholar 

  8. M.H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A9, 2178 (1974); D.M. Ceperley and M.H. Kalos, in Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer-Verlag, Heidelberg, 1979).

    ADS  Google Scholar 

  9. See, e.g., M.H. Kalos and P.A. Whitlock, Monte Carlo Methods, Vol. I (Wiley, New York, 1986).

    Book  MATH  Google Scholar 

  10. R. Blankenbecler, D.J. Scalapino, and R.L. Sugar, Phys. Rev. D 24, 2278 (1981).

    Article  ADS  Google Scholar 

  11. G. Sugiyama and S.E. Koonin, Ann. Phys. (NY) 168, 1 (1986).

    Article  ADS  Google Scholar 

  12. S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh Jr., J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B 40, 506 (1989).

    Article  ADS  Google Scholar 

  13. S. Sorella et al., Int. Jour. Mod. Phys. B 1 993 (1988).

    Article  ADS  Google Scholar 

  14. See, e.g., D.R. Hamann and S.B. Fahy, Phys. Rev. B 41, 11352 (1990).

    Article  ADS  Google Scholar 

  15. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).

    Article  ADS  Google Scholar 

  16. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985).

    Article  ADS  Google Scholar 

  17. J.W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1987), Chapter 7.

    Google Scholar 

  18. S. Rombouts, K. Heyde, and N. Jachowicz, Phys. Lett. A 242, 271 (1998).

    Article  ADS  Google Scholar 

  19. R.T. Scalettar, private communication.

    Google Scholar 

  20. S.B. Fahy and D.R. Hamann, Phys. Rev. Lett. 65, 3437 (1990); Phys. Rev. B 43, 765 (1991).

    Article  ADS  Google Scholar 

  21. J.B. Anderson, J. Chem. Phys. 63, 1499 (1975); 65, 4122 (1976).

    Article  ADS  Google Scholar 

  22. J.W. Moskowitz, K.E. Schmidt, M.A. Lee, and M.H. Kalos, J. Chem. Phys. 77, 349 (1982); P.J. Reynolds, D.M. Ceperley, B.J. Alder, and W.A. Lester, J. Chem. Phys. 77, 5593 (1982).

    Article  ADS  Google Scholar 

  23. D.F.B. ten Haaf, H.J.M. van Bemmel, J.M.J. van Leeuwen, W. van Saarloos, and D.M. Ceperley, Phys. Rev. B 51, 13039 (1995); H.J.M. van Bemmel, D.F.B.ten Haaf, W. van Saarloos, J.M.J. van Leeuwen, and G. An, Phys. Rev. Lett., 72, 2442 (1994).

    Article  ADS  Google Scholar 

  24. D.M. Ceperley, Phys. Rev. Lett. 69, 331 (1992); in Simulation in Condensed Matter Physics and Chemistry, eds. K. Binder and G. Ciccotti (1996).

    Article  ADS  Google Scholar 

  25. C.J. Umrigar, M.P. Nightingale, and K.J. Runge, J. Chem. Phys. 99, 2865 (1993); M.P. Nightingale, Quantum Monte Carlo Methods in Physics and Chemistry, eds. M.P. Nightingale and C.J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, Dordrecht, 1999).

    Article  ADS  Google Scholar 

  26. S. Zhang and M.H. Kalos, Phys. Rev. Lett. 67, 3074 (1991); J.B. Anderson, C.A. Traynor, and B.M. Boghosian, J. Chem. Phys. 95, 7418 (1991).

    Article  ADS  Google Scholar 

  27. S. Zhang and E.C. Allman, in Computer Simulation Studies in Condensed Matter Physics XII, eds. D.P. Landau, S.P. Lewis, and H.B. Schuttler (Springer Verlag, Heidelberg, Berlin, 1999).

    Google Scholar 

  28. N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 (1992).

    Article  ADS  Google Scholar 

  29. See, e.g., M. Guerrero, J.E. Gubernatis, and S. Zhang, Phys. Rev. B 57, 11980 (1998); J. Bonca and J. E. Gubernatis, Phys. Rev. B 58, 6992 (1998); M. Guerrero, G. Ortiz, J.E. Gubernatis, Phys. Rev. B 59, 1706 (1999); S. Zhang and E.C. Allman, in Computer Simulation Studies in Condensed Matter Physics XII, eds. D.P. Landau, S.P. Lewis, and H.B. Schuttler (Springer Verlag, Heidelberg, Berlin, 1999).

    Article  ADS  Google Scholar 

  30. O.F. Sankey, A.A. Demkov, and T. Lenosky, Phys. Rev. B 57, 15129 (1998); S. Mazumdar, S. Ramasesha, R.T. Clay, D.K. Campbell, Phys. Rev. Lett. 82, 1522 (1999); K.E. Schmidt and S. Fantoni, Phys. Lett. B 446, 99 (1999).

    Google Scholar 

  31. H. De Raedt and M. Frick, Phys. Reports, 231, 109 (1993).

    Google Scholar 

  32. S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993).

    Article  ADS  Google Scholar 

  33. R.M. Noack, private communication.

    Google Scholar 

  34. A. Parola, S. Sorella, S. Baroni, R. Car, M. Parrinello, and E. Tosatti, Physica C 162–164, 771 (1989); A. Parola, S. Sorella, M. Parrinello, and E. Tosatti, Phys. Rev. B 43, 6190 (1991); G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, 6877 (1990).

    Article  Google Scholar 

  35. C.J. Umrigar et al., Phys. Rev. Lett. 60 1719 (1988).

    Article  ADS  Google Scholar 

  36. N. Trivedi and D.M. Ceperley, Phys. Rev. B 41, 4552 (1990)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Zhang, S. (2004). Quantum Monte Carlo Methods for Strongly Correlated Electron Systems. In: Sénéchal, D., Tremblay, AM., Bourbonnais, C. (eds) Theoretical Methods for Strongly Correlated Electrons. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/0-387-21717-7_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21717-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00895-0

  • Online ISBN: 978-0-387-21717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics