Skip to main content

Bayesian Inference in Physiologically-based Pharmacokinetic Modeling: Application to Aniticancer Drug Development

  • Conference paper
Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis Volume 3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Teorell. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch. Intern. Pharmacodyn. Therap. 57:205–225 (1937).

    CAS  Google Scholar 

  2. R. Bellman, R. Kalaba, and J.A Jacquez. Some mathematical aspects of chemotherapy — II: The distribution of a drug in the body. Bull Math Biophysics 22:309–322 (1960).

    Google Scholar 

  3. K.B. Bichoff and R.L. Dedrick. Thiopental pharmacokinetics. J. Pharm. Sci. 57:1346–1351 (1968).

    Google Scholar 

  4. K.B. Bichoff, R.L. Dedrick, D.S. Zaharko, and J.A. Longstreth. Methotrexate pharmacokinetics. J. Pharm. Sci. 60:1128–1133 (1971).

    Google Scholar 

  5. A. Bernareggi and M. Rowland. Physiological modeling of cyclosporin kinetics in rats and man. J. Pharmacokinet. Biopharm. 19:21–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. G.E. Blakey, I. A. Nestorov, P. A. Arundel, L. J. Aarons, and M Rowland. Qualitative structure-pharmacokinetics relationships: I. Development of a whole-body physiologically based model to characterize changes in pharmacokinetics across a homologous series of barbiturates in the rat. J. Pharmacokin. Biopharm. 25:277–213 (1997).

    Article  CAS  Google Scholar 

  7. M. Weiss. The relevance of residence time theory to pharmacokinetics. Eur. J. Clin. Pharmacol. 43:571–579 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. K.S. Pang and M. Rowland. Hepatic clearance of drugs. J. Pharmacokin. Biopharm. 5:625–683 (1977).

    CAS  Google Scholar 

  9. N.H.G. Holford and L.B. Sheiner. Understanding the dose-effect relationship: Clinical application of pharmacokinetic-pharmacodynamic models. Clin. Pharmacokin. 6:429–453 (1981)

    CAS  Google Scholar 

  10. R. Ramakrishnan, D.C. Dubois, R.R. Almon, N.A. Pysczczynski, and W.J. Jusko. Fifth-generation model for corticosteriod pharmacodynamics. J. of Pharmacokin. and Pharmacodyn. 21:1–24 (2002).

    Google Scholar 

  11. P.H. Van der Graaf and M. Danhof. Analysis of drug-receptor interactions in vivo: A new approach in pharmacokinetic-pharmacodynamic modeling. Int. J. Clin. Pharmacol. Ther. 35:442–446 (1997).

    PubMed  Google Scholar 

  12. L.B. Sheiner, H. Halkin, C. Peck, B. Rosenberg and K.L. Melmon. Improved computer-assisted digoxin therapy: A method using feedback of measured serum digoxin concentrations. Ann. Intern. Med. 82:619–627 (1975).

    CAS  PubMed  Google Scholar 

  13. A. Gelman, F. Bois, and J. Jiang. Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. of the American Stat. Assoc. 91:1400–1412 (1996).

    Google Scholar 

  14. F. Jonsson and G. Johanson. Physiologically based modeling of the inhalation kinetics of styrene in humans using a Bayesian population approach. Toxicol. Appl. Pharmacol. 179:35–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. L. Xu, J.L Eiseman, M.J. Egorin and D.Z. D’Argenio. Physiologically-based pharmacokinetic and molecular pharmacodynamics of 17-(allyalamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice. J. of Pharmacokin. and Pharmacodyn. 30:185–219 (2003).

    CAS  Google Scholar 

  16. C. Erlichman, J. L. Grem, H. I. Scher, D. L. Trump, R. Ramanathan, M.J. Egorin, B. Blaylock, and P. Ivy. Phase I clinical trials of 17-allylamino-17-deoxygeldanamycin (17-AAG) (NSC#330507) sponsored by the national cancer institute, USA(NCI). 1st International Conference on the HSP90 Chaperone Machine. 2002.

    Google Scholar 

  17. P. N. Munster, M. Srethapakdi, M. M. Moasser and N. Rosen. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res. 61:2945–2952 (2001).

    CAS  PubMed  Google Scholar 

  18. R.C. Schnur, M.L. Corman, R.J. Gallaschun, B.A. Cooper, M.F. Dee, J.L. Doty, M.L. Muzzi, J.D. Moyer, C.I. DiOrio, E.G. Barbacci, P.E. Miller, A.T. O’Brien, M. J. Morin, B.A. Foster, V.A. Pollack, D.M. Savage, D.E. Sloan, L.R. Pustilnik, and M.P. Moyer. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 38:3806–3812 (1995).

    CAS  PubMed  Google Scholar 

  19. R.C. Schnur, M. L. Corman, R. J. Gallaschun, B.A. Cooper, M. F. Dee, J. L. Doty, M. L. Muzzi, C. I. DiOrio, E. G. Barbacci, P. E. Miller, V. A. Pollack, D. M. Savage, D. E. Sloan, L. R. Pusitilnik, J. D. Mayer and M. P. Moyer. ErbB-2 oncogene inhibition by geldanamycin derivatives: Synthesis, mechanism of action, and structure-activity relationships. J. Med. Chem. 38:3813–3820 (1995).

    CAS  PubMed  Google Scholar 

  20. T.W. Schulte and L. M. Neckers. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42:273–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. J. Page, J. Heath, R. Fulton, E. Yalkowsky, E. Tabibi, J. Tomzszewski, A. Smith, and L. Rodman. Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin (NSC-330507D) toxicity in rats. Proc. Am. Assoc. Cancer Res. 38:308 (1997).

    Google Scholar 

  22. M. J. Egorin, D. M. Rosen, J. H. Wolff, P. S. Callery, S. M. Musser, and J. L. Eiseman. Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res. 58:2385–2396 (1998).

    CAS  PubMed  Google Scholar 

  23. M.J. Egorin, E.G. Zuhowski, D.M. Rosen, D.L. Sentz, J.M. Covey, and J. L. Eiseman. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxy-geldanamycin (NSC 330507) in CD2F1 micel. Cancer Chemother. Pharmacol. 47:291–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. W.G. An, R.C. Schnur, L.M. Neckers, and M.V. Blagosklonny. Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother. Pharmacol. 40:60–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. L.M. Neckers, T.W. Schulte, and E. Mimnaugh. Geldanamycin as a potential anticancer agent: Its molecular target and biochemical activity. Invest. New Drugs 17:361–373 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. C. Chavany, E. Mimnaugh, P. Miller, R. Bitton, P. Nguyen, J. Trepel, L. Whitesell, R. Schnur, J. Moyer, and L. Neckers. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem. 271:4974–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. E. G. Mimnaugh, C. Chavany, and L. Neckers. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271:22796–22801 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. C. Schneider, L. Sepp-Lorenzino, E. Nimmesgern, O. Ouerfelli, S. Danishefsky, N. Rosen, and F. U. Hartl. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl. Acad. Sci. 93:14536–14541 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. T.W. Schulte, M.V. Blagosklonny, C. Ingui, and L. Neckers. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270:24585–24588 (1995).

    CAS  PubMed  Google Scholar 

  30. C.E. Stebbins, A.A. Russo, C. Schneider, N. Rosen, F.U. Hartl, and N. P. Pavletich. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. D.Z. D’Argenio and A. Schumitzky. ADAPT II User’sGuide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los Angeles, 1997.

    Google Scholar 

  32. R.I. Morimoto. Cells in stress: Transcriptional activation of heat shock genes. Science 259:1409–1410 (1993).

    CAS  PubMed  Google Scholar 

  33. C. Jolly and R.I. Morimoto. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92:1564–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Shi, D.D. Mosser, and R.I. Morimoto. Molecular chaperones as HSF1-specific transcriptional repressers. Genes Dev. 12:654–666 (1998).

    CAS  PubMed  Google Scholar 

  35. R.I. Morimoto. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788–3796 (1998).

    CAS  PubMed  Google Scholar 

  36. D.E. Mager and W.J. Jusko. Pharmacodynamic modeling of time-dependent transduction systems. Clin. Pharmacol. Ther. 70:210–216 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Xu, L., D’Argenio, D.Z., Eiseman, J.L., Egorin, M.J. (2004). Bayesian Inference in Physiologically-based Pharmacokinetic Modeling: Application to Aniticancer Drug Development. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis Volume 3. The International Series in Engineering and Computer Science, vol 765. Springer, Boston, MA. https://doi.org/10.1007/0-306-48523-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48523-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7804-0

  • Online ISBN: 978-0-306-48523-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics