Skip to main content

Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows

  • Conference paper
Advances in LES of Complex Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 65))

Abstract

A new formulation of Detached-Eddy Simulation (DES) based on the k-ω RANS model of Menter (M-SST model) is presented, the goal being an improvement in separation prediction over the S-A model. A new numerical scheme adjusted to the hybrid nature of the DES approach and the demands of complex flows is also presented. The scheme functions as a fourth-order centered differentiation in the LES regions of DES and as an upwind-biased (fifth or third order) differentiation in the RANS and outer irrotational flow regions. The capabilities of both suggested upgrades in DES are evaluated on a set of complex separated flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.H., and von Doenhoff, A.E. (1959) Theory of Wings Sections, Including Summary of Airfoil Data, Dover, New York.

    Google Scholar 

  • Abernathy, F.H. (1962) Flow over an inclined plate, ASME J. Basic Eng. 61, 380–388.

    Google Scholar 

  • Akselvoll, K., and Moin, P. (1993) Large Eddy Simulation of a backward facing step flow, in: Eng. Turb. Modelling and Exp. 2, W. Rodi and F. Martelli Eds., Elsevier.

    Google Scholar 

  • Breuer, M. (2000) A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow, Int. J. Heatand Fluid Flow 21, 648–654.

    Article  Google Scholar 

  • Cantwell, B., and Coles, D. (1982) An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, J. Fluid Mech. 136, 321–374.

    Article  ADS  Google Scholar 

  • Comte-Bellot, G., and Corrsin, S. (1971) Simple Eulerian time correlation of full-and narrow-band velocity signalsin grid-generated ‘isotropic’ turbulence, J. Fluid Mech. 48, 273–337.

    Article  ADS  Google Scholar 

  • Constantinescu, G., and Squires, K.D. (2000) LES and DES investigations of turbulent flow over a sphere, AIAA Paper 2000-0540.

    Google Scholar 

  • Forsythe, J., Hoffmann, K., and Dieteker, J.-F. (2000) Detached-eddy simulation of a supersonic axisymmetric base flow with unstructured flow solver, AIAA Paper 2000-2410.

    Google Scholar 

  • Fureby, C. (1999) Large eddy simulation of rearward-facing step flow, AIAA J. 37, No. 11, 1401–1410.

    Article  ADS  Google Scholar 

  • Hoerner, S.F. (1958) Fluid Dynamics Drag, http://members.aol.com/hfdy/home.htm

  • Jovic, S., and Driver, D. (1995) Reynolds number effects on the skin friction in separated flows behind a backward facing step, Exp. Fluids, 18, 464.

    Article  Google Scholar 

  • Le, H., Moin, P., and Kim, J. (1993) Direct numerical simulation of turbulent flow over a backward-facing step. Ninth Symp. on Turbulent Shear Flows, Kyoto, Japan, Aug. 1993, pp. 13-2-1–13-2-5.

    Google Scholar 

  • McCroskey, W.J. (1987) A Critical Assessment of Wind Tunnel Results for the NACA 0012 Airfoil, AGARD_CP429.

    Google Scholar 

  • McCroskey, W.J., McAlister, K.W., Carr, L.W., and Pucci, S.L. (1982) An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, NASA TM 84245.

    Google Scholar 

  • Menter, F.R. (1993) Zonal two-equation k-ω turbulence models for aerodynamic flows, AIAA Paper 1993-2906.

    Google Scholar 

  • Moin, P. (1998) Numerical and physical issues in large eddy simulation of turbulent flows, JSME Int. J,, Series B, 41, No. 2, 454–463.

    MathSciNet  Google Scholar 

  • Neto, A.S., Grand, D., Metais, O., and Lesieur, M. (1993) A numerical investigation of the coherent vortices in turbulence behind a backward-facing step, J. Fluid Mech. 256, 1–25.

    Article  ADS  MATH  Google Scholar 

  • Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., and Spalart P.R. (2000) An approach to wall modelling in large-eddy simulation, Phys. Fluids 12, No. 7.

    Google Scholar 

  • Rogers, S.E., and Kwak, D. (1988) An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations, AIAA Paper88-2583-CP.

    Google Scholar 

  • Roshko, A. (1981) Experiments on the flow past a circular cylinder at very high Reynolds number, J. Fluid Mech., 10(3), 345–356.

    Article  ADS  Google Scholar 

  • Shur, M., Strelets, M., Zaikov, L., Gulyaev, A., Kozlov, V., and Secundov, A. (1995) Comparative numerical testing of one-and two-equation turbulence models for flows with separation and reattachment, AIAA paper, AIAA-95-0863.

    Google Scholar 

  • Shur, M., Spalart, P.R., Strelets, M., and Travin, A. (1999) Detached-eddy simulation of an airfoil at high angle of attack, in W. Rodi and D. Laurence (eds.) 4th Int. Symp. Eng. Turb. Modelling and Measurements, pp.669–678. May 24-24, 1999. Corsica, Elsevier, Amsterdam.

    Google Scholar 

  • Spalart, P.R., and Allmaras, S.R. (1994) A one-equation turbulence model for aerodynamic flows, La Rech. A’erospatiale 1, 5–21.

    Google Scholar 

  • Spalart, P.R., Jou, W.-H., Strelets, M., and Allmaras, S.R. (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, 1st AFOSR Int. Conf. on DNS/LES, Aug. 4–8, 1997, Ruston, LA, in Advances in DNS/LES, C. Liu & Z. Liu (eds.), Greyden Press, Columbus, OH.

    Google Scholar 

  • Spalart, P.R. (1999) Strategies for turbulence modelling and simulations, in: 4th Int. Symp. Eng. Turb. Modelling and Measurements, pp.3–17. May 24-24, 1999, Corsica, France.

    Google Scholar 

  • Travin, A., Shur, M., Strelets, M., and Spalart. P.R. (2000) Detached-eddy simulations past a circular cylinder, Int. J. Flow, Turbulence and Combustion 63, Nos. 1–4, 293–313.

    Article  MATH  Google Scholar 

  • van Nunen, J.W.G. (1974) Pressure and forces on circular cylinder in a cross flow at high Reynolds numbers, in: Naudascher, (ed.), Flow Induced Structural Vibrations. 1974, Springer-Verlag, Berlin, pp. 748–754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Travin, A., Shur, M., Strelets, M., Spalart, P.R. (2002). Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows. In: Friedrich, R., Rodi, W. (eds) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol 65. Springer, Dordrecht. https://doi.org/10.1007/0-306-48383-1_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48383-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0486-5

  • Online ISBN: 978-0-306-48383-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics