Skip to main content

Theorems of the Alternative and Optimization

  • Reference work entry
Encyclopedia of Optimization

In a general format a theorem of the alternative (TA) claims that, between two given propositions, say S and S ∗, one and only one is true. In mathematics S and S ∗ are, in general, systems of equalities or inequalities. A TA for linear algebraic systems was established as early as 1873 by P. Gordan [11]; then there was the celebrated Farkas lemma in 1902 [7] (cf. also Farkas lemma; Farkas lemma: Generalizations); indeed, such a lemma does not appear as a TA, but an obvious reformulation shows it as a TA. Some further important TA were established in 1915 by E. Stiemke [22], in 1936 by T.S. Motzkin [19], in 1951 by M.L. Slater [21], in 1956 by A.W. Tucker and in 1956 by R.J. Duffin (see [17]). Subsequently, due mainly to the development of the optimization theory, there has been a blooming of TAs; they have been extended to not necessarily algebraic systems, to systems in an infinite-dimensional space, to systems in a complex space, and even to systems for point-to-set maps. TA...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadie, J.: ‘On the Kuhn–Tucker theorem’, in J. Abadie (ed.): Nonlinear Programming, North Holland, 1967, pp. 19–36.

    Google Scholar 

  2. Banach, S.: ‘Sur les lignes rectifiables et les surfaces dont l’aire est finie’, Fundam. Math.7 (1925), 225–237.

    MATH  Google Scholar 

  3. Craven, B.D., Gwinner, J., and Jeyakumar, V.: ‘Nonconvex theorems of the alternative and minimization’, Optim.18 no. 2 (1987), 151–163.

    MathSciNet  MATH  Google Scholar 

  4. Dantzig, G.B.: Linear programming and extensions, Princeton Univ. Press, 1963.

    Google Scholar 

  5. Du, D.-Z, and Pardalos, P.M.: Minimax and applications, Kluwer Acad. Publ., 1995.

    Google Scholar 

  6. Fan, K., Glicksberg, I., and Hoffman, A.J.: ‘Systems of inequalities involving convex function’, Proc. Amer. Soc.8 (1957), 617–622.

    MathSciNet  MATH  Google Scholar 

  7. Farkas, J.: ‘Uber die Theorie der einfachen Ungleichungen’, J. Reine Angew. Math.124 (1902), 1–27.

    Google Scholar 

  8. Ferrero, O.: ‘Theorems of the alternative for set-valued functions in infinite-dimensional spaces’, Optim.2 no. 2 (1989), 167–175.

    MathSciNet  Google Scholar 

  9. Giannessi, F.: ‘Theorems of the alternative and optimality conditions’, J. Optim. Th. Appl.42 no. 3 (1984), 331–365.

    Article  MathSciNet  MATH  Google Scholar 

  10. Giannessi, F.: ‘Theorems of the alternative for multifunctions with applications to optimization: General results’, J. Optim. Th. Appl.55 (1987), 233–256.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gordan, P.: ‘Über die Auflösungen linearer Gleichungen mit reelen Coefficienten’, Math. Ann.6 (1873), 23–28.

    Article  MathSciNet  Google Scholar 

  12. Hahn, H.: ‘Über lineare Gleichungen in linearen Räumen’, J. Math.157 (1927), 214–229.

    MATH  Google Scholar 

  13. Helly, E.: ‘Über lineare Funktional Operationen’, Sitzungsber. Akad. Wiss. Wien121 (1912), 265–297.

    MATH  Google Scholar 

  14. Heinecke, G., and Oettli, W.: ‘A nonlinear theorem of the alternative without regularity assumptions’, J. Math. Anal. Appl.146 (1990), 580–590.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeyakumar, V.: ‘Convexlike alternative theorems and mathematical programming’, Optim.16 no. 5 (1985), 643–652.

    MathSciNet  MATH  Google Scholar 

  16. Lehmann, R., and Oettli, W.: The theorem of the alternative: Key-theorem, and the vector maximum problem, Vol. 8 of Math. Program., North-Holland, 1975, 332–344.

    Google Scholar 

  17. Mangasarian, O.L.: Nonlinear programming, Classics Appl. Math., SIAM, 1994.

    Google Scholar 

  18. Mastroeni, G., and Pappalardo, M.: ‘Separation and regularity in the image space’, New trends in Mathematical Programming, Kluwer Acad. Publ., 1998.

    Google Scholar 

  19. Motzkin, T.S.: ‘Beiträge zur Theorie der Linearen Ungleichungen’, Inaugural Diss. Basel, Jerusalem (1936).

    Google Scholar 

  20. Rapcsák, T.: Smooth nonlinear optimization inRn, No. 19 in Nonconvex Optim. Appl. Kluwer Acad. Publ., 1997.

    Google Scholar 

  21. Slater, M.L.: ‘A note on Motzkin’s transposition theorem’, Econometrica19 (1951), 185–186.

    Article  MathSciNet  MATH  Google Scholar 

  22. Stiemke, E.: ‘Über positive Lösungen homogener linearer Gleichungen’, Math. Ann.76 (1915), 340–342.

    Article  MathSciNet  MATH  Google Scholar 

  23. Tardella, F.: ‘On the image of a constrained extremum problem and some applications to the existence of a minimum’, J. Optim. Th. Appl.60 no. 1 (1989), 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tricomi, F.G.: Integral equations, Interscience, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Giannessi, F. (2001). Theorems of the Alternative and Optimization . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_521

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_521

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics