Skip to main content

Summary

Nitrogen is available in the environment in different redox states and in a wide variety of nitrogenous compounds. Algal cells are capable of assimilating nitrogen from many of these molecules into, ultimately, the amino group of glutamate. In this chapter, recent findings on nitrogen assimilation pathways in Chlamydomonas reinhardtii are reviewed. Specific transport systems are required to take up nitrogenous compounds, though most amino acids are deaminated extracellularly. Ammonium is the preferred nitrogen source. The presence of ammonium both represses and inhibits the utilization of alternative nitrogen compounds. Purines are assimilated phototrophically and catabolized to generate urea and then ammonium by the standard aerobic pathway that operates in other organisms. The nitrate assimilation pathway has been dissected at the molecular level and a useful collection of mutants is now available. The mutants are affected at various steps: nitrate/nitrite transport, nitrate and nitrite reduction, biosynthesis of molybdopterin cofactor, and regulation of the pathway. At least six genes which might encode structural elements for this pathway are clustered together within a 45 kb genomic region. They show coordinated regulation with a similar response to different nutritional or environmental effectors. Regulatory elements responsible for molecular mechanisms of control, including sensing of nitrate and ammonium and the transduction of these signals, are starting to be defined. More research is required for resolution of the details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAO:

amino acid oxidase

AAT:

aspartate amino transferase

ABC:

ATP-binding cassette

AST:

alanine amino transferase

fd:

ferredoxin

GDH:

glutamate dehydrogenase

GS:

glutamine synthetase

GOGA:

glutamate synthase

HANT:

high affinity nitrate transporter / HANiT high affinity nitrite transporter

LAO:

L-amino acid oxidase

MFS:

major facilitator superfamily

MoCo:

molybdopterin cofactor

MoCoCP:

MoCo Carrier Protein

MSX:

methionine-D,L-sulfoximine

MVH:

reduced methyl viologen

NR:

nitrate reductase

NiR:

nitrite reductase

OG:

2-oxoglutarate

NT:

nitrate transporter

NiT:

nitrite transporter

PLP:

pyridoxal phosphate

POT:

proton-dependent oligopeptide transporter

PPT:

phosphinothricin

References

  • Aguilar M, Cárdenas J and Fernández E (1991) Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1073: 463–469

    CAS  PubMed  Google Scholar 

  • Aguilar M, Cárdenas J and Fernández E (1992a) Quantitation of molybdopterin oxidation product in wild-type and molybdenum cofactor deficient mutants of Chlamydomonas reinhardtii. Biochim Biophys Acta1160: 269–274

    Google Scholar 

  • Aguilar M, Kalakoutskii K, Cárdenas J and Fernández E (1992b) Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein in Chlamydomonas reinhardtii. FEBS Lett 307: 162–163

    Article  CAS  PubMed  Google Scholar 

  • Aguilar M, Prieto R, Cárdenas J and Fernández E (1992c) Nit-7, A new locus for molybdopterin cofactor biosynthesis in the green alga Chlamydomonas reinhardtii. Plant Physiol 98: 395–398

    CAS  Google Scholar 

  • Alamillo JM, Cárdenas J and Pineda M (1991) Purification and molecular properties of urate oxidase from Chlamydomonas reinhardtii. Biochim Biophys Acta 1076: 203–208

    CAS  PubMed  Google Scholar 

  • Alamillo JM, Cárdenas J and Pineda M (1992) Kinetic and catalytic characterization of urate oxidase from Chlamy-domonas reinhardtii. J Mol Catal 77: 353–364

    CAS  Google Scholar 

  • Amy NK and Rajagopalan KV (1979) Characterization of molybdenum cofactor from Escherichia coli. J Bacteriol 140: 114–124

    CAS  PubMed  Google Scholar 

  • Antia NJ, Harrison PJ, and Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30: 1–89

    Google Scholar 

  • Arberg B (1947) On the mechanism of the toxic action of chlorates and some related substances upon young wheat plants. Kungl Lantbrukshögskol Ann 15: 37–107

    Google Scholar 

  • Azuara MP and Aparicio PJ (1983) In vivo blue-light activation of Chlamydomonas reinhardtii nitrate reductase. Plant Physiol 71: 286–290

    CAS  Google Scholar 

  • Blankenship JE and Kindle KL (1992) Expression of chimeric genes by the light regulated cabII-1 promoter in Chlamydomonas reinhardtii: A cabII-1/nitl gene functions as a dominant selectable marker in a nitl-nit2-strain. Mol Cell Biol 12: 5268–5279

    CAS  PubMed  Google Scholar 

  • Byrne TE, Wells MR and Johnson CH (1992) Circadian rhythms of chemotaxis and of methylammonium uptake in Chlamydomonas. Plant Physiol 98: 879–886

    CAS  Google Scholar 

  • Caboche M, Campbell W, Crawford NM, Fernández E, Kleinhofs A, Ida S, Mendel R, Omata T, Rothstein S and Wray J (1994) Genes involved in nitrate assimilation. Plant Mol Biol Rep 12: S45–S49

    CAS  Google Scholar 

  • Cárdenas J, Laín-Guelbenzu B, Moyano E, and Muñoz-Blanco J (1990) Role of amination and transamination in ammonium incorporation in Chlamydomonas reinhardtii. In: Ullrich WR, Rigano C, Fuggi A and Aparicio PJ (eds) Inorganic Nitrogen in Plants and Microorganisms, pp 222–228. Springer-Verlag, Berlin

    Google Scholar 

  • Campbell W and Kinghorn JR (1990) Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci 15: 315–319

    Article  CAS  PubMed  Google Scholar 

  • Chen Q and Silflow CD (1996) Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. Plant Physiol 112: 987–996

    CAS  PubMed  Google Scholar 

  • Chen Z-Y, Burow MD, Mason CB and Moroney J (1996) A low-CO2-inducible gene encoding an alanine: α-ketoglutarate aminotransferase in Chlamydomonasreinhardtii. Plant Physiol 112: 677–684

    CAS  PubMed  Google Scholar 

  • Cherel I, Gonneau M, Meyer C, Pelsy F and Caboche M (1990) Biochemical and immunological characterization of nitrate reductase deficient nia mutants of Nicotiana plumbaginifolia. Plant Physiol 92: 659–665

    CAS  Google Scholar 

  • Córdoba F, Cárdenas J and Fernández E (1985) Role of the diaphorase moiety on the reversible inactivation of the Chlamydomonas reinhardii nitrate reductase complex. Biochim Biophys Acta 827: 8–13

    Google Scholar 

  • Córdoba F, Cárdenas J and Fernández E (1987) Cooperative regulation by ammonium and ammonium derivatives of nitrite uptake in Chlamydomonas reinhardtii. Biochim Biophys Acta 902: 287–292

    Google Scholar 

  • Cove DJ (1976) Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Mol Gen Genet 146: 147–159

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (1995) Nitrate: Nutrient and signal for plant growth. Plant Cell 7: 859–868

    Article  CAS  PubMed  Google Scholar 

  • Cullimore JV and Sims AP (1980) An association between photorespiration and protein catabolism: Studies with Chlamydomonas. Planta 150: 392–396

    Article  CAS  Google Scholar 

  • Cullimore JV and Sims AP (1981a) Glutamine synthetase of Chlamydomonas: its role in the control of nitrate assimilation. Planta 153: 18–24

    Article  CAS  Google Scholar 

  • Cullimore JV and Sims AP (1981b) Pathway of ammonia assimilation in illuminated and darkened Chlamydomonas reinhardtii. Phytochemistry 20: 933–940

    CAS  Google Scholar 

  • Cullimore JV and Sims AP (1981c) Occurrence of two forms of glutamate synthase in Chlamydomonas reinhardtii. Phytochemistry 20: 597–600

    CAS  Google Scholar 

  • Dagestad D, Lien T and Knutsen G (1981) Degradation and compartmentation of urea in Chlamydomonas reinhardtii. Arch Microbiol 129: 261–264

    Article  CAS  Google Scholar 

  • Debuchy R, Purton S and Rochaix JD (1989) The arginosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the arg7 locus. EMBO J 8: 2803–2809

    CAS  PubMed  Google Scholar 

  • Fernández E and Aguilar M (1987) Molybdate repair of molybdopterin deficient mutants from Chlamydomonas reinhardtii. Curr Genet 12: 349–355

    Article  Google Scholar 

  • Fernández E and Cárdenas J (1981 a) In vitro complementation of assimilatory NAD(P)H-nitrate reductase from mutants of Chlamydomonas reinhardii Biochim Biophys Acta 657: 1–12

    PubMed  Google Scholar 

  • Fernández E and Cárdenas J (1981b) Occurrence of xanthine dehydrogenase in Chlamydomonas reinhardii. A common cofactor shared by xanthine dehydrogenase and nitrate reductase. Planta 153: 254–257

    Article  Google Scholar 

  • Fernández E and Cárdenas J (1982a) Regulation of the nitrate-reducing system enzymes in wild and mutant strains from Chlamydomonas reinhardii. Mol Gen Genet 186: 164–169

    Article  PubMed  Google Scholar 

  • Fernández E and Cárdenas J (1982b) Biochemical characterization of a singular mutant of nitrate reductase from Chlamydomonas reinhardii: A new evidence for a heteropolymeric enzyme structure. Biochim Biophys Acta 681: 530–537

    Google Scholar 

  • Fernández E and Cárdenas J (1983a) Isolation and properties of the NAD(P)H-cytochrome c reductase subunit of Chlamydomonas reinhardii NAD(P)H-nitrate reductase. Biochim Biophys Acta 745: 12–19

    Google Scholar 

  • Fernández E and Cárdenas J (1983b) Nitrate reductase from a mutant strain of Chlamydomonas reinhardii incapable of nitrate assimilation. Z Naturforsch 38: 439–445

    Google Scholar 

  • Fernández E and Cárdenas J (1983c) Isoelectric focusing of the NAD(P)H-cytochrome c reductase subunit of Chlamydomonas reinhardii nitrate reductase. Z Naturforsch 38: 35–38

    Google Scholar 

  • Fernández E and Cárdenas J (1989) Genetic and regulatory aspects of nitrate assimilation in algae. In: Wray JL and Kinghorn JR (eds) Molecular and Genetic Aspects of Nitrate Assimilation, pp 101–124, Oxford University Press, Oxford

    Google Scholar 

  • Fernández E and Matagne RF (1984) Genetic analysis of nitrate reductase-deficient mutants from Chlamydomonas reinhardii. Curr Genet 8: 635–640

    Article  Google Scholar 

  • Fernández E and Matagne RF (1986) In vivo complementation analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardtii. Curr Genet 10: 397–403

    Article  PubMed  Google Scholar 

  • Fernández E, Schnell R, Ranum LPW, Hussey SC, Silflow CD and Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86: 6449–6453

    PubMed  Google Scholar 

  • Ferris PJ (1989) Characterization of a Chlamydomonas transposon, Gulliver, resembling those in higher plants. Genetics 122: 363–377

    CAS  PubMed  Google Scholar 

  • Fischer P and Klein U (1988) Localization of nitrogen-assimilating enzymes in the chloroplast of Chlamydomonas reinhardtii. Plant Physiol 88: 954–952

    Google Scholar 

  • Florencio FJ and Vega JM (1982) Regulation of the assimilation of nitrate in Chlamydomonas reinhardii. Phytochemistry 21: 1195–1200

    Article  CAS  Google Scholar 

  • Florencio FJ and Vega JM (1983a) Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii. Planta 158: 288–293

    Article  CAS  Google Scholar 

  • Florencio FJ, and Vega JM (1983b) Separation, purification and characterization of two isoforms of glutamine synthetase from Chlamydomonas reinhardii. Z Naturforsch 38c: 531–538

    CAS  Google Scholar 

  • Florencio FJ, Gadal P and Buchaman BB (1993) Thioredoxin-linked activation of the chloroplast and cytosolic forms of Chlamydomonas reinhardtii glutamine synthetase. Plant Physiol Biochem 31: 649–655

    CAS  Google Scholar 

  • Flores E and Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 487–517. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1984a) Heteromultimeric structure on the nitrate reductase complex of Chlamydomonas reinhardii. EM BO J 3: 1403–1407

    CAS  Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1984b) Ammonium (methylammonium) is the corepressor of nitrate reductase in Chlamydomonas reinhardii. FEES Lett 176: 453–456

    Article  CAS  Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1987a) A mutant of Chlamydomonas reinhardtiialtered in the transport of ammonium and methylammonium. Mol Gen Genet 206: 414–418

    Article  CAS  Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1987b) Involvement of reversible inactivation in the regulation of nitrate reductase enzyme levels in Chlamydomonas reinhardtii. Plant Physiol 84: 665–669

    CAS  Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1988a) Regulation by ammonium of nitrate and nitrite assimilation in Chlamydomonas reinhardtii. Biochim Biophys Acta 951: 98–103

    CAS  PubMed  Google Scholar 

  • Franco AR, Cárdenas J and Fernández E (1988b) Two different carriers transport both ammonium and methylammonium in Chlamydomonas reinhardtii. J Biol Chem 263: 14039–14043

    CAS  PubMed  Google Scholar 

  • Franco AR, Diaz ME, Pineda M and Cárdenas J (1996a) Characterization of a mutant of Chlamydomonas reinhardtii that uses L-methionine-S-sulfoximine and phosphinothricin as nitrogen sources for growth. Plant Physiol 110: 1215–1222

    CAS  PubMed  Google Scholar 

  • Franco AR, López-Siles FJ and Cárdenas J (1996b) Resistance to phosphinothricin (glufosinate) and its utilization as a nitrogen source by Chlamydomonas reinhardtii. Appl Environ Microbiol 62: 3834–3839

    CAS  Google Scholar 

  • Franzén LG, Rochaix JD and Heijne G (1990) Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondria and higher plant chloroplast presequences. FEBS Lett 260: 165–168

    Article  PubMed  Google Scholar 

  • Galván A, Córdoba F, Cárdenas J and Fernández E (1991) Regulation of nitrite uptake and nitrite reductase expression in Chlamydomonas reinhardtii. Biochim Biophys Acta 1074: 6–11

    PubMed  Google Scholar 

  • Galván A, Cárdenas J and Fernández E (1992) Nitrate reductase regulates expression of nitrite uptake and nitrite reductase activities in Chlamydomonas reinhardtii Plant Physiol 98: 422–426

    Google Scholar 

  • Galván A, Quesada A and Fernández E (1996) Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J Biol Chem 271:2088–2092

    PubMed  Google Scholar 

  • Galván F, Márquez A and Vega JM (1984) Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardtii. Planta 162: 180–187

    Article  Google Scholar 

  • Glass AMD, Shaff JE and Kochian LV (1992) Studies of the uptake of nitrate in barley. IV electrophysiology. Plant Physiol 99: 456–463

    CAS  Google Scholar 

  • Gruber H, Goetinck SD, Kirk DL and Schmitt R (1992) The nitrate reductase-encoding gene of Volvox carteri: Map location, sequence and induction kinetics. Gene 120: 75–83

    Article  CAS  PubMed  Google Scholar 

  • Gruber H, Kirzinger SH and Schmitt R (1996) Expression of the Volvox gene encoding nitrate reductase: Mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA. Plant Mol Biol 31: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Guerrero MG, Vega JM and Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32: 169–204

    Article  CAS  Google Scholar 

  • Halliwell B (1981) Chloroplast Metabolism: The Structure and Function of Chloroplasts in Green Leaf Cells. Clarendon Press, Oxford

    Google Scholar 

  • Harris EH (1989) The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego

    Google Scholar 

  • Herrera J, Paneque A, Maldonado JM, Barea JL and Losada M (1972) Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardii. Biochem Biophys Res Commun 48: 996–1003

    Article  CAS  PubMed  Google Scholar 

  • Hipkin CP and Cannons AC (1985) Inorganic nitrogen assimilation and the regulation of glucose-6-phosphate dehydrogenase in unicellular algae. Plant Sci 41: 155–160

    Article  CAS  Google Scholar 

  • Hipkin CR, Everest SA, Rees TAV and Syrett PJ (1982) Ammonium generation by nitrogen-starved cultures of Chlamydomonas reinhardii. Planta 154: 587–592

    Article  CAS  Google Scholar 

  • Hodson RC, Williams SKII and Davidson WRJr (1975) Metabolic control of urea catabolism in Chlamydomonas reinhardii and Chlorella pyrenoidosa. J Bacteriol 121: 1022–1035

    CAS  PubMed  Google Scholar 

  • Hoff T, Truong H-N and Caboche M (1994) The use of mutant and transgenic plants to study nitrate assimilation. Plant Cell Environ 17:489–506

    CAS  Google Scholar 

  • Huppe HC and Turpin DH (1996) Appearance of novel Glucose-6-phosphate dehydrogenase isoforms in Chlamydomonas reinhardtii during growth on nitrate. Plant Physiol 110:1431–1433

    CAS  PubMed  Google Scholar 

  • Johnson JL (1980) The molybdenum cofactor common to nitrate reductase, xanthine dehydrogenase and sulphite oxidase. In: Coughlan MP (ed) Molybdenum and Molybdenum Containing Enzymes, pp 345–383. Pergamon Press, New York

    Google Scholar 

  • Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR and Innis MA (1990) Isolation and characterization of the crnA-niiA-niaD genecluster for nitrate assimilation in Aspergillus nidulans Gene 90: 181–192

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, Neuburger M, and Douce R (1981) Role of glutamate-oxalacetate transaminase and malate dehydrogenase in the regeneration of NAD+ for glycine oxidation by spinach leaf mitochondria. Plant Physiol 67: 467–469

    CAS  Google Scholar 

  • Kalakoutskii KL and Fernández E (1995) The Chlamydomonas reinhardtii nitrate reductase complex has 105 kDa subunits in the wild-type strain and a structural mutant. Plant Sci 105: 195–206

    Article  CAS  Google Scholar 

  • Kalakoutskii KL and Fernández E (1997) Different forms of molybdenum cofactor in Vicia faba seeds: The presence of molybdenum cofactor carrier protein and its purification. Planta 201:64–70

    Article  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232

    CAS  PubMed  Google Scholar 

  • Kindle KL, Schnell RA, Fernández E and Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using a gene for nitrate reductase. J Cell Biol 109: 2589–2601

    Article  CAS  PubMed  Google Scholar 

  • Kirk DL and Kirk MM (1978) Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardii. Plant Physiol 61: 556–560

    CAS  Google Scholar 

  • Laín-Guelbenzu B, Muñoz-Blanco J and Cárdenas J (1990) Purification and properties of L-aspartate aminotransferase of Chlamydomonas reinhardtii. Eur J Biochem 188: 529–533

    PubMed  Google Scholar 

  • Laín-Guelbenzu B, Cárdenas J and Muñoz-Blanco J (1991) Purification and properties of L-alanine aminotransferase from Chlamydomonas reinhardtii. Eur J Biochem 202: 881–887

    PubMed  Google Scholar 

  • Lam HM, Coschigano IC, Oliveira IC, Melo-Oliveira R and Coruzzi GM (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47: 569–593

    Article  CAS  PubMed  Google Scholar 

  • Lauter FR, Ninnemann O, Bucher M, Riesmeier JW and Frommer WB (1996) Preferential expression of an ammonium transporter and two putative nitrate transporters in root hair of tomato. Proc Natl Acad Sci 93: 8139–8144

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ and Miflin BJ (1975) The occurrence of glutamate synthase in algae. Biochem Biophys Res Commun 64: 856–862

    Article  CAS  PubMed  Google Scholar 

  • Leftley JW and Syrett PJ (1973) Urease and ATP:amidolyase activity in unicellular algae. J Gen Microbiol 77: 109–115

    CAS  Google Scholar 

  • Liljeström S and Arberg B (1966) Studies on the mechanism of chlorate toxicity. Kungl Lantbrukshögskol Ann 32: 93–107

    Google Scholar 

  • Lisa TA, Piedras P, Cárdenas J and Pineda M (1995) Utilization of adenine and guanine as nitrogen sources by Chlamydomonas reinhardtii. Plant Cell Environ 18: 583–588

    CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus sp PCC 7942: Homology between cyanobacterial and higher-plant nitrite reductases Plant Mol Biol 21: 1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Marini AM, Vissers S, Urrestarazu A and André B (1994) Cloning and expression of the Mep1 gene encoding an ammonium transporter. EMBO J 13: 3456–3463

    CAS  PubMed  Google Scholar 

  • Márquez AJ, Galván F and Vega JM (1984) Purification and characterization of the NADH-glutamate synthase from Chlamydomonas reinhardii. Plant Sci Lett 34: 305–314

    Google Scholar 

  • Márquez AJ, Galván F and Vega JM (1986a) Utilization of ammonium by mutant and wild type Chlamydomonas reinhardtii. Studies on the glutamate synthase activity. J Plant Physiol 124: 95–102

    Google Scholar 

  • Márquez AJ, Gotor C, Romero LC, Galván F and Vega JM (1986b) Ferredoxin-glutamate synthase from Chlamydomonas reinhardtii. Prosthetic groups and preliminary studies of mechanism. Int J Biochem 18: 531–535

    Google Scholar 

  • Martínez-Rivas JM, Vega JM and Márquez AJ (1991) Differential regulation of the nitrate-reducing and ammonium-assimilatory systems in synchronous cultures of Chlamydomonas reinhardtii. FEMS Microbiol Lett 78: 85–88

    Article  Google Scholar 

  • McNally SF, Hirel B, Gadal P, Mann F and Stewart GR (1983) Gluthamine synthetases of higher plants. Plant Physiol 72:22–25

    CAS  Google Scholar 

  • Mendel RR, Alikulov ZA, Ľvov P and Müller AJ (1981) Presence of the molybdenum-cofactor in nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Mol Gen Genet 181: 395–399

    Article  CAS  Google Scholar 

  • Mendel RR, Buchanan RJ and Wray JL (1984) Characterization of a new type of molybdenum cofactor-mutant in cell cultures of Nicotiana tabacum. Mol Gen Genet 195: 186–189

    Article  CAS  Google Scholar 

  • Miflin PJ and Lea P (1976) The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885

    Article  CAS  Google Scholar 

  • Moyano E, Cárdenas J and Muñoz-Blanco J (1992a) Purification and properties of three NAD(P)+ isozymes of L-glutamate dehydrogenase of Chlamydomonas reinhardtii. Biochim Biophys Acta 1119: 63–68

    CAS  PubMed  Google Scholar 

  • Moyano E, Ramazanov Z, Cárdenas J and Muñoz-Blanco J (1992b) Intracellular localization of three L-glutamate dehydrogenase isozymes from Chlamydomonas reinhardtii. Plant Physiol 100: 1575–1579

    CAS  Google Scholar 

  • Moyano E, Cárdenas J and Muñoz-Blanco J (1995) Involvement of NAD(P)+-glutamate dehydrogenase isoenzymes in carbon and nitrogen metabolism in Chlamydomonas reinhardtii. Physiol Plant 94: 553–559

    Article  CAS  Google Scholar 

  • Müller AJ and Grafe R (1978) Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol Gen Genet 161:67–76

    Article  Google Scholar 

  • Muñoz-Blanco J and Cárdenas J (1992) Changes in glutamate dehydrogenase activity of Chlamydomonas reinhardtii under different trophic and stress conditions. Plant Cell Environ 12: 173–182

    Google Scholar 

  • Muñoz-Blanco J, Laín-Guelbenzu B and Cárdenas J (1988) Characterization of an L-aspartate aminotransferase activity in Chlamydomonas reinhardtii. Physiol Plant 74: 433–439

    Google Scholar 

  • Muñoz-Blanco J, Moyano E and Cárdenas J (1989) Glutamate dehydrogenase isozymes of Chlamydomonas reinhardtii. FEMS Microbiol Lett 61: 315–318

    Article  Google Scholar 

  • Muñoz-Blanco J, Hidalgo-Martínez J and Cárdenas J (1990) Extracellular deamination of L-amino acids by Chlamydomonas reinhardtii cells. Planta 182: 194–198

    Article  Google Scholar 

  • Navarro MT, Prieto R, Fernández E and Galván A (1996) Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardtii. Plant J 9: 819–827

    Article  CAS  Google Scholar 

  • Nelson JAE and Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15: 5762–5769

    CAS  PubMed  Google Scholar 

  • Nichols GL and Syrett PJ (1978) Nitrate reductase deficient mutants of Chlamydomonas reinhardii. Isolation and genetics. J Gen Microbiol 108: 71–77

    CAS  Google Scholar 

  • Ninnemann O, Jauniaux JC and Frommer WB (1994) Identification of a high-affinity NH +4 transporter from plants. EMBO J 13: 3464–3471

    CAS  PubMed  Google Scholar 

  • Ohresser M, Matagne RF and Loppes R (1997) Expression of the arylsulphatase gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31:264–271

    Article  CAS  PubMed  Google Scholar 

  • Omata T, Andriesse X and Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp PCC 7942. Mol Gen Genet 236: 193–202

    Article  CAS  PubMed  Google Scholar 

  • Pajuelo E, Borrero JA and Márquez A (1993) Immunological approach to subunit composition of ferredoxin-nitrite reductase from Chlamydomonas reinhardtii. Plant Sci 95: 9–21

    Article  CAS  Google Scholar 

  • Pajuelo E, Pajuelo P, Clemente MT and Márquez A (1995) Regulation of the expression of ferredoxin-nitrite reductase in synchronous cultures of Chlamydomonas reinhardtii. Biochem Biophys Acta 1249:72–78

    PubMed  Google Scholar 

  • Pérez-Vicente R, Cárdenas J and Pineda M (1991) Distinction between hypoxanthine and xanthine transport in Chlamydomonas reinhardtii. Plant Physiol 95: 126–130

    Google Scholar 

  • Pérez-Vicente R, Pineda M and Cárdenas J (1987) Occurrence of an NADH-diaphorase activity associated with xanthine dehydrogenase in Chlamydomonas reinhardtii. FEMS Microbiol Lett 43: 321–325

    Google Scholar 

  • Pérez-Vicente R, Pineda M and Cárdenas J (1988) Isolation and characterization of xanthine dehydrogenase from Chlamydomonas reinhardtii. Physiol Plant 72: 101–107

    Google Scholar 

  • Pérez-Vicente R, Alamillo JM, Cárdenas J and Pineda M (1992) Purification and substrate inactivation of xanthine dehydrogenase from Chlamydomonas reinhardtii, Biochim Biophys Acta 1117: 159–166

    PubMed  Google Scholar 

  • Pérez-Vicente R, Burón MI, González-Reyes JA, Cárdenas J and Pineda M (1995) Xanthine accumulation and vacuolization in Chlamydomonas reinhardtii cells. Protoplasma 186: 93–98

    Article  Google Scholar 

  • Piedras P (1995) Metabolismo de los ureidos alantoina y alantoato en Chlamydomonas reinhardtii. PhD Dissertation. Universidad de Córdoba, Córdoba

    Google Scholar 

  • Piedras P, Pineda M, Muñoz J and Cárdenas J (1992) Purification and characterization of an L-amino acid oxidase from Chlamydomonas reinhardtii. Planta 188: 13–18

    CAS  Google Scholar 

  • Piedras P, Cárdenas J and Pineda M (1995) Solubilization and extraction of allantoinase and allantoicase from the green alga Chlamydomonas reinhardtii. Phytochem Anal 6: 239–243

    CAS  Google Scholar 

  • Pineda M and Cárdenas J (1985) The urate uptake system in Chlamydomonas reinhardtii. Biochim Biophys Acta 820: 95–99

    CAS  Google Scholar 

  • Pineda M and Cárdenas J (1996) Transport and assimilation of purines in Chlamydomonas reinhardtii. Sci Mar 60: 195–201

    CAS  Google Scholar 

  • Pineda M, Fernández E and Cárdenas J (1984) Urate oxidase of Chlamydomonas reinhardii. Physiol Plant 62: 453–457

    CAS  Google Scholar 

  • Pineda M, Cabello P and Cárdenas J (1987) Ammonium regulation of urate uptake in Chlamydomonas reinhardtii. Planta 171: 496–500

    Article  CAS  Google Scholar 

  • Pineda M, Piedras P and Cárdenas J (1994) A continuous spectrophotometric assay for ureideglycolase activity with lactate dehydrogenase or glyoxylate reductase as coupling enzyme. Anal Biochem 222: 450–455

    Article  CAS  PubMed  Google Scholar 

  • Prieto R and Fernández E (1993) Toxicity and mutagenesis by chlorate are independent of nitrate reductase activity in Chlamydomonas reinhardtii. Mol Gen Genet 237: 429–438

    CAS  PubMed  Google Scholar 

  • Prieto R, Dubus A, Galván A and Fernández E (1996) Isolation and characterization of two new regulatory mutants for nitrate assimilation in Chlamydomonas reinhardtii obtained by insertional mutagenesis. Mol Gen Genet 251: 461–471

    CAS  PubMed  Google Scholar 

  • Quesada A and Fernández E (1994) Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol Biol 24: 185–194

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Galván A, Schnell RA, Lefebvre PA and Fernández E (1993) Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Mol Gen Genet 240: 387–394

    CAS  PubMed  Google Scholar 

  • Quesada A, Galván A and Fernández E (1994) Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 5: 407–419

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Krapp A, Trueman L, Daniel-Vedele F, Fernández E, Forde BG and Caboche M (1997) PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high affinity nitrate transporters of the crnA family. Plant Mol Biol 34:265–274

    Article  CAS  PubMed  Google Scholar 

  • Ramazanov Z and Cárdenas J (1994) Photorespiratory ammonium assimilation in chloroplasts of Chlamydomonas reinhardtii. Physiol Plant 91: 495–502

    Article  CAS  Google Scholar 

  • Roldán JM, Verbellen JP, Buther WL and Tokuyasu K (1982) Intracellular localization of nitrate reductase in Neurospora crassa. Plant Physiol 70: 872–874

    Google Scholar 

  • Romero LC, Gotor C, Márquez A, Forde BG and Vega JM (1988) Antigenic similarities between ferredoxin-dependent nitrite reductase and glutamate synthase from Chlamydomonas reinhardtii. Biochim Biophys Acta 957: 152–157

    CAS  PubMed  Google Scholar 

  • Schiedlmeier B, Schmidtt R, Müller W, Kirk MM, Gruber H, Mages W and Kirk DL (1994) Nuclear transformation of Votvox carteri. Proc Natl Acad Sci USA 91: 5080–5084

    CAS  PubMed  Google Scholar 

  • Schnell RA, and Lefebvre PA (1993) Isolation of the Chlamydomonas regulatory gene Nit2 by transposon tagging. Genetics 134: 737–747

    CAS  PubMed  Google Scholar 

  • Semler BL, Hodson RC, Williams SK II and SH Howell (1975) The induction of allophanate lyase during vegetative cell cycle in light-synchronized cultures of Chlamydomonas reinhardi. Biochim Biophys Acta 399, 71–78

    CAS  PubMed  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ and Rufty TW (1990) Studies of the nitrate uptake system in barley I. Kinetics of 13NO 3 influx. Plant Physiol 93: 1426–1432

    CAS  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M and Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271: 5398–5403

    CAS  PubMed  Google Scholar 

  • Siverio JM, González C, Mendoza-Riquel A, Pérez MD and González G (1993) Reversible inactivation and binding to mitochondria of nitrate reductase by heat shock in the yeast Hansenula anomala. FEBS Lett 318: 153–156

    Article  CAS  PubMed  Google Scholar 

  • Sodeinde OA and Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90: 9199–9203

    CAS  PubMed  Google Scholar 

  • Solomonson LP and Vennesland B (1972) Nitrate reductase and chlorate toxicity in Chlorella vulgaris. Plant Physiol 50: 421–424

    CAS  Google Scholar 

  • Sosa FM, Ortega T and Barea JL (1978) Mutants from Chlamydomonas reinhardii affected in their nitrate assimilation capability. Plant Sci Lett 11: 51–58

    CAS  Google Scholar 

  • Stallmeyer B, Nerlich A, Schiemann J, Brinkmann H and Mendel RR (1995) Molybdenum co-factor biosynthesis: The Arabidopsis thaliana cDNA cnxl encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein Cinnamon and three Escherichia coli proteins. Plant J 8: 751–762

    Article  CAS  PubMed  Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. Physiological bases of phytoplankton ecology. Can J Fish Aquat Sci 210: 182–210

    Google Scholar 

  • Toby AL and Kemp CL (1977) Nitrate reductase mutants in Eudorina elegans (Chlorophyceae). J Phycol 13: 368–372

    CAS  Google Scholar 

  • Torchinsky M (1987) Transamination: Its discovery, biological and chemical aspects (1937–1987). Trends Biochem Sci 12: 115–117

    Article  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA and Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705–713

    Article  CAS  PubMed  Google Scholar 

  • Trueman LJ, Onyeocha I and Forde BG (1996a) Recent Advances in the molecular biology of a family ofeukaryotic high affinity nitrate transporters. Plant Physiol Biochem 34: 621–627

    CAS  Google Scholar 

  • Trueman LJ, Richardson A and Forde BG (1996b) Molecular cloning of higher plant homologues of the high affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175: 223–231

    Article  CAS  PubMed  Google Scholar 

  • Ulrich WR (1992) Transport of nitrate and ammonium through plant membranes. In: Mengel K and Pilbeam DJ (eds) Nitrogen Metabolism of Plants, pp 121–137. Oxford Sci Publ, Oxford

    Google Scholar 

  • Unkles SE, Hawker KL, Campbell EI, Montague P and Kinghorn JR (1991) crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci USA 88: 204–208

    CAS  PubMed  Google Scholar 

  • Unthan M, Klipp W and Schmid GH (1996) Nucleotide sequence of the narB gene encoding assimilatory nitrate reductase from the cyanobacterium Oscillatoria chalybea. Biochem Biophys Acta 1305:19–24

    PubMed  Google Scholar 

  • Vallon O, Bulté L, Kuras R, Olive J and Wollman FA (1993) Extensive accumulation of an extracellular L-amino acid oxydase during gametogenesis of Chlamydomonas reinhardtii. EurJ Biochem 215: 351–360

    CAS  Google Scholar 

  • Vaucheret H, Kronenberger J, Lépingle A, Vilaine F, Boutin JP and Caboche M (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2: 259–269

    Google Scholar 

  • Vega JM, Cárdenas J and Losada M (1980) Ferredoxin-nitrite reductase. Methods Enzymol 69: 255–270

    CAS  Google Scholar 

  • Vogels GD and Van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev 40: 403–468

    CAS  PubMed  Google Scholar 

  • Wang R and Crawford NM (1996) Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proc Natl Acad Sci 93: 9297–9301

    CAS  PubMed  Google Scholar 

  • Watt DA, Amory AM and Cresswell CF (1992) Effect of nitrogen supply on the kinetics and regulation of nitrate assimilation in Chlamydomonas reinhardtii Dangeard. J Exp Bot 43: 605–615

    CAS  Google Scholar 

  • Watt DA, Amory AM, Watt MP and Cresswell CF (1993) Appearance of nitrate concentration-dependent polypeptides in N-limited Chlamydomonas reinhardtii cells. J Exp Bot 44: 447–155

    CAS  Google Scholar 

  • Whitney PA and Cooper T (1973) Ure acarboxylase from Saccharomyces cerevisiae. J Biol Chem 248: 325–320

    CAS  PubMed  Google Scholar 

  • Williams SK II and Hodson RC (1977) Transport of urea at low concentrations in Chlamydomonas reinhardtii. J Bacteriol 130:266–273

    CAS  PubMed  Google Scholar 

  • Zhang D and Lefebvre PA (1997) FAR1, a new negative regulatory locus required for the repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 146: 121–133

    CAS  PubMed  Google Scholar 

  • Zhou J and Kleinhofs A (1996) Molecular evolution of nitrate reductase genes. J Mol Evol 42: 432–442

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fernández, E., Galván, A., Quesada, A. (1998). Nitrogen Assimilation and its Regulation. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_33

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics