Skip to main content

Ras Signaling, Deregulation of Gene Expression and Oncogenesis

  • Chapter
Signal Transduction in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 115))

Conclusion and Perspectives

While our understanding of Ras signaling is significant and many of the signaling components and pathways activated by Ras have been delineated, it is also likely that much remains to be determined. The discovery of additional downstream effectors of Ras continues and reveals further diversity and complexity in the cytoplasmic signaling activities of Ras. The recent identification of PLC3 as a Ras effector links Ras activity directly to the actions of second messengers, calcium and diacylglycerol, that in turn cause pleotropic cellular responses. Conversely, some effectors of Ras (Nore1 and RASSF1) may promote apoptosis rather than oncogenesis. How these effectors may contribute to the mechanism of Ras-mediated oncogenesis will be important to establish. One major consequence of these diverse effector signaling events involves changes in gene expression. Some signaling events directly stimulate the activity of specific transcription factors and the number of these factors continues to increase. Other Ras-mediated signaling events, including DNA methylation or histone acetylation, may cause global changes in gene expression. The development and applications of methods, such as microarray analyses and functional proteomics, to evaluate global changes in gene or protein expression will further increase our knowledge of the gene targets of Ras. Hence, this area of Ras research will evolve rapidly in the coming years. The accumulation of information will certainly occur at a pace that greatly exceeds our ability to make sense of these observations. Nevertheless, our utilization of this information will facilitate important advances for understanding the role of Ras in oncogenesis and for the identification of novel therapeutic approaches for cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktas, H., Cai, H., and Cooper, G.M. (1997). Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIPJ. Mol.Cell.Biol. 17, 3850–3857.

    CAS  PubMed  Google Scholar 

  • Arber, N., Sutter, T., Miyake, M., Kahn, S.M., Venkatraj, V.S., Sobrino, A., Warburton, D., Holt, P.R., and Weinstein, I.B. (1996). Increased expression of cyclin D1 and the Rb tumor suppressor gene in c-K-ras transformed rat enterocytes. Oncogene 12, 1903–1908.

    CAS  PubMed  Google Scholar 

  • Arbiser, J.L., Moses, M.A., Fernandez, C.A., Ghiso, N., Cao, Y., Klauber, N., Frank, D., Brownlee, M., Flynn, E., Parangi, S., Byers, H.R., and Folkman, J. (1997). Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc.Natl.Acad.Sci.U.S.A. 94, 861–866.

    Article  CAS  PubMed  Google Scholar 

  • Baba, I., Shirasawa, S., Iwamoto, R., Okumura, K., Tsunoda, T., Nishioka, M., Fukuyama, K., Yamamoto, K., Mekada, E., and Sasazuki, T. (2000). Involvement of deregulated epiregulin expression in tumorigenesis in vivo through activated Ki-Ras signaling pathway in human colon cancer cells. Cancer Res. 60, 6886–6889.

    CAS  PubMed  Google Scholar 

  • Ballin, M., Gomez, D.E., Sinha, C.C., and Thorgeirsson, U.P. (1988). Ras oncogene mediated induction of a 92 kDa metalloproteinase; strong correlation with the malignant phenotype. Biochem.Biophys.Res.Commun. 154, 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Sagi, D. (2001). A Ras by any other name. Mol.Cell Biol. 21, 1441–1443.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Sagi, D. and Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227–238.

    CAS  PubMed  Google Scholar 

  • Barbacid, M. (1987). ras genes. Annu.Rev.Biochem. 56, 779–827.

    Article  CAS  PubMed  Google Scholar 

  • Baruch, R.R., Melinscak, H., Lo, J., Liu, Y., Yeung, O., and Hurta, R.A. (2001). Altered matrix metalloproteinase expression associated with oncogene-mediated cellular transformation and metastasis formation. Cell Biol.Int. 25, 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard, E.J., Gruber, S.B., and Muschel, R.J. (1994). Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc.Natl.Acad.Sci.U.S.A. 91, 4293–4297.

    CAS  PubMed  Google Scholar 

  • Bernhard, E.J., Muschel, R.J., and Hughes, E.N. (1990). Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res. 50, 3872–3877.

    CAS  PubMed  Google Scholar 

  • Bos, J.L. (1989). ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689.

    CAS  PubMed  Google Scholar 

  • Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–126.

    Google Scholar 

  • Brtva, T.R., Drugan, J.K., Ghosh, S., Terrell, R.S., Campbell-Burk, S., Bell, R.M., and Der, C.J. (1995). Two distinct Raf domains mediate interaction with Ras. J.Biol.Chem. 270, 9809–9812.

    CAS  PubMed  Google Scholar 

  • Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J., and Der, C.J. (1998). Increasing complexity of Ras signaling. Oncogene 17, 1395–1413.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, A.F. and Tuck, A.B. (1993). Ras-responsive genes and tumor metastasis. Crit.Rev.Oncogenesis 4, 95–114.

    CAS  PubMed  Google Scholar 

  • Chan, T.O., Rittenhouse, S.E., and Tsichlis, P.N. (1999). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu.Rev.Biochem, 68, 965–1014.

    Article  CAS  PubMed  Google Scholar 

  • Charvat, S., Le Griel, C., Chignol, M.C., Schmitt, D., and Serres, M. (1999). Ras-transfection up-regulated HaCaT cell migration: inhibition by Marimastat. Clin.Exp.Metastasis 17, 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M., Sexl, V., Sherr, C.J., and Roussel, M.F. (1998). Assembly of cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase kinase (MEK1). Proc.Natl.Acad.Sci.U.S.A. 95, 1091–1096.

    CAS  PubMed  Google Scholar 

  • Chin, L., Tam, A., Pomerantz, J., Wong, M., Holash, J., Bardeesy, N., Shen, Q., O’Hagan, R., Pantginis, J., Zhou, H., Horner, J.W., Cordon-Cardo, C., Yancopoulos, G.D., and DePinho, R.A. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472.

    Article  CAS  PubMed  Google Scholar 

  • Ciardiello, F., Kim, N., Hynes, N., Jaggi, R., Redmond, S., Liscia, D.S., Sanfilippo, B., Merlo, G., Callahan, R., Kidwell, W.R., and. (1988). Induction of transforming growth factor alpha expression in mouse mammary epithelial cells after transformation with a point-mutated c-Ha-ras protooncogene. Mol.Endocrinol. 2, 1202–1216.

    CAS  PubMed  Google Scholar 

  • Ciardiello, F., McGeady, M.L., Kim, N., Basolo, F., Hynes, N., Langton, B.C., Yokozaki, H., Saeki, T., Elliott, J.W., and Masui, H. (1990). Transforming growth factor-alpha expression is enhanced in human mammary epithelial cells transformed by an activated c-Ha-ras protooncogene but not by the c-neu protooncogene, and overexpression of the transforming growth factor-alpha complementary DNA leads to transformation. Cell Growth Differ. 1, 407–420.

    CAS  PubMed  Google Scholar 

  • Cichowski, K. and Jacks, T. (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604.

    Article  CAS  PubMed  Google Scholar 

  • Clark, G.J. and Der, C.J. (1993). Oncogenic activation of Ras proteins. In GTPases in Biology I. B.F. Dickey and L. Birnbaumer, eds, (Berlin; Springer Verlag), pp. 259–288.

    Google Scholar 

  • Clark, G.J. and Der, C.J. (1995). Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res.Treat. 35, 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Collard, J.G., Schijven, J.F., and Roos, E. (1987). Invasive and metastatic potential induced by ras-transfection into mouse BW5147 T-lymphoma cells. Cancer Res. 47, 754–759.

    CAS  PubMed  Google Scholar 

  • Coussens, L.M. and Werb, Z. (1996). Matrix metallo proteinases and the development of cancer. Chem.Biol. 3, 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Cowley, S., Paterson, H., Kemp, P., and Marshall, C.J. (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell 77, 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Cox, A.D. (2001). Farnesyl transferase inhibitors: potential role in the treatment of cancer. Drugs 61, 723–732.

    Article  CAS  PubMed  Google Scholar 

  • Cox, A.D. and Der, C.J. (1997). Farnesyl transferase inhibitors and cancer treatment: targeting simply Ras? Biochim.Biophys.Acta 1333, F51–F71

    CAS  PubMed  Google Scholar 

  • Cullen, P.J. (2001). Ras effectors: Buying shares in Ras plc. Curr.Biol. 11, R342–R344

    CAS  PubMed  Google Scholar 

  • Davies, S.P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem.J 351, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Engel, G., Popowicz, P., Marshall, H., Norling, G., Svensson, C., Auer, G., Akusjarvi, G., and Linder, S. (1992). Elevated stromelysin-1 and reduced collagenase-IV expression in invasive rat embryo fibroblasts expressing E1A deletion mutants + T24-H-ras. Int.J.Cancer 51, 761–766.

    CAS  PubMed  Google Scholar 

  • Feig, L.A. and Buchsbaum, R.J. (2002). Cell signaling: life or death decisions of ras proteins. Curr.Biol. 12, R259–R261

    Article  CAS  PubMed  Google Scholar 

  • Feig, L.A., Urano, T., and Cantor, S. (1996). Evidence for a Ras/Ral signaling cascade. Trends Biochem.Sci. 21, 438–441.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I.J. (1999). Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother.Pharmacol. 43 Suppl, S3–10.

    Article  Google Scholar 

  • Filmus, J., Robles, A.I., Shi, W., Wong, M.J., Colombo, L.L., and Conti, C.J. (1994). Induction of cyclin D1 over expression by activated ras, Oncogene 9, 3627–3633.

    CAS  PubMed  Google Scholar 

  • Filmus, J., Shi, W., and Spencer, T. (1993). Role of transforming growth factor alpha (TGF-α) in the transformation of ras-transfected rat intestinal epithelial cells. Oncogene 8, 1017–1022.

    CAS  PubMed  Google Scholar 

  • Finco, T.S., Westwick, J.K., Norris, J.L., Beg, A.A., Der, C.J., and Baldwin Jr., A.S. (1997). Oncogenic Ha-Ras-induced signaling activates NF-kB transcriptional activity, which is required for cellular transformation. J.Biol.Chem. 272, 24113–24116.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima, H., Yamamoto, H., Itoh, F., Nakamura, H., Min, Y., Horiuchi, S., Iku, S., Sasaki, S., and Imai, K. (2001). Association of matrilysin mRNA expression with K-ras mutations and progression in pancreatic ductal adenocarcinomas. Carcinogenesis 22, 1049–1052.

    Article  CAS  PubMed  Google Scholar 

  • Gangarosa, L.M., Sizemore, N., Graves-Deal, R., Oldham, S.M., Der, C.J., and Coffey, R.J. (1997). A Raf-independent epidermal growth factor receptor autocrine loop is necessary for Ras transformation of rat intestinal epithelial cells. J.Biol.Chem. 272, 18926–18931.

    Article  CAS  PubMed  Google Scholar 

  • Giambernardi, T.A., Grant, G.M., Taylor, G.P., Hay, R.J., Maher, V.M., McCormick, J.J., and Klebe, R.J. (1998). Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol. 16, 483–496.

    Article  CAS  PubMed  Google Scholar 

  • Gille, H. and Downward, J. (1999). Multiple ras effector pathways contribute to G(l) cell cycle progression. J.Biol.Chem. 274, 22033–22040.

    Article  CAS  PubMed  Google Scholar 

  • Gire, V., Marshall, C.J., and Wynford-Thomas, D. (1999). Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras. Oncogene 18, 4819–4832.

    Article  CAS  PubMed  Google Scholar 

  • Glick, A.B., Sporn, M.B., and Yuspa, S.H. (1991). Altered regulation of TGF-beta 1 and TGF-alpha in primary keratinocytes and papillomas expressing v-Ha-ras. Mol.Carcinog. 4, 210–219.

    CAS  PubMed  Google Scholar 

  • Godwin, A.K. and Lieberman, M.W. (1990). Early and late responses to induction of rasT24 expression in Rat-1 cells. Oncogene 5, 1231–1241.

    CAS  PubMed  Google Scholar 

  • Granger-Schnarr, M., Benusiglio, E., Schnarr, M., and Sassone-Corsi, P. (1992). Transformation and transactivation suppressor activity of the c-Jun leucine zipper fused to a bacterial represser. Proc.Natl.Acad.Sci.USA 89, 4236–4239.

    CAS  PubMed  Google Scholar 

  • Greulich, H. and Erikson, R.L. (1998). An analysis of Mek1 signaling in cell proliferation and transformation. J.Biol.Chem. 273, 13280–13288.

    Article  CAS  PubMed  Google Scholar 

  • Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B., and Marmé, D. (1995). Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J.Biol.Chem. 270, 25915–25919.

    CAS  PubMed  Google Scholar 

  • Gum, R., Lengyel, E., Juarez, J., Chen, J.H., Sato, H., Seiki, M., and Boyd, D. (1996). Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-l sequences. J. Biol. Chem. 271, 10672–10680.

    CAS  PubMed  Google Scholar 

  • Gum, R., Wang, H., Lengyel, E., Juarez, J., and Boyd, D. (1997). Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase-and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481–1493.

    Article  CAS  PubMed  Google Scholar 

  • Habets, G.G.M., Knepper, M., Sumortin, J., Choi, Y.J., Sasazuki, T., Shirasawa, S., and Bollag, G. (2001). Chip array screening for Ras-regulated genes. Methods Enzymol. 332, 245–260.

    CAS  PubMed  Google Scholar 

  • Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich, J., Bosse, M., Eickhoff, H., Nietfeld, W., Reinhardt, R., Lehrach, H., and Moelling, K. (2000). Induction of putative tumor-suppressing genes in Rat-1 fibroblasts by oncogenic Raf-1 as evidenced by robot-assisted complex hybridization. J.Mol.Med. 78, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • Henry, D.O., Moskalenko, S.A., Kaur, K.J., Fu, M., Pestell, R.G., Camonis, J.H., and White, M.A. (2000). Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kappa B. Mol.Cell Biol 20, 8084–8092.

    Article  CAS  PubMed  Google Scholar 

  • Himelstein, B.P., Lee, E.J., Sato, H., Seiki, M., and Muschel, R.J. (1997). Transcriptional activation of the matrix metalloproteinase-9 genein an H-ras and v-myc transformed ratembryo cell line. Oncogene 14, 1995–1998.

    Article  CAS  PubMed  Google Scholar 

  • Hua, J. and Muschel, R.J. (1996). Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res. 56, 5279–5284.

    CAS  PubMed  Google Scholar 

  • Jayaraman, G., Srinivas, R., Duggan, C., Ferreira, E., Swaminathan, S., Somasundaram, K., Williams, J., Hauser, C., Kurkinen, M., Dhar, R., Weitzman, S., Buttice, G., and Thimmapaya, B. (1999). p300/cAMP-responsive element-binding protein interactions with ets-1 and ets-2 in the transcriptional activation of the human stromelysin promoter. J.Biol.Chem. 274,17342–17352.

    CAS  PubMed  Google Scholar 

  • Johnson, R., Spiegelman, B., Hanahan, D., and Wisdom, R. (1996). Cellular transformation and malignancy induced by ras require c-jun. Mol.CeIl.Biol. 16, 4504–4511.

    CAS  Google Scholar 

  • Joneson, T., White, M.A., Wigler, M.H., and Bar-Sagi, D. (1996). Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812.

    CAS  PubMed  Google Scholar 

  • Kerkhoff, E. and Rapp, U.R. (1997). Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol.Cell.Biol. 17, 2576–2586.

    CAS  PubMed  Google Scholar 

  • Khosravi-Far, R., Solski, P.A., Kinch, M.S., Burridge, K., and Der, C.J. (1995). Activation of Rac and Rho, and mitogen activated protein kinases, arer equiredfor Ras transformation. Mol.Cell.Biol. 15,6443–6453.

    CAS  PubMed  Google Scholar 

  • Khosravi-Far, R., White, M.A., Westwick, J.K., Solski, P.A., Chrzanowska-Wodnicka, M., Van Aelst, L., Wigler, M.H., and Der, C.J. (1996). Oncogenic Rasactivation of Raf/MAP kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol.Cell.Biol. 16, 3923–3933.

    CAS  PubMed  Google Scholar 

  • Khwaja, A., Rodriguez-Viciana, P., Wennström, S., Warne, P.H., and Downward, J. (1997). Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. MBO J. 16,2783–2793.

    CAS  Google Scholar 

  • Kim, D., Kim, S., Koh, H., Yoon, S.O., Chung, A.S., Cho, K.S., and Chung, J. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 15, 1953–1962.

    Article  CAS  PubMed  Google Scholar 

  • Kirstein, M., Sanz, L., Quinones, S., Moscat, J., Diaz-Meco, M.T., and Saus, J. (1996). Cross-talk between different enhancer elements during mitogenic induction of the human stromelysin-1 gene. J.Biol.Chem. 271,18231–18236.

    CAS  PubMed  Google Scholar 

  • Konishi, T., Huang, C.L., Adachi, M., Taki, T., Inufusa, H., Kodama, K., Kohno, N., and Miyake, M. (2000). The K-ras gene regulates vascular endothelial growth factor gene expression in non-small cell lung cancers. Int.J.Oncol. 16, 501–511.

    CAS  PubMed  Google Scholar 

  • Laderoute, K.R., Alarcon, R.M., Brody, M.D., Calaoagan, J.M., Chen, E.Y., Knapp, A.M., Yun, Z., Denko, N.C., and Giaccia, A.J. (2000). Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin.Cancer Res. 6, 2941–2950.

    CAS  PubMed  Google Scholar 

  • Ladha, M.H., Lee, K.Y., Upton, T.M., Reed, M.F., and Ewen, M.E. (1998). Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol.Cell Biol. 18, 6605–6615.

    CAS  PubMed  Google Scholar 

  • Langer, S.J., Bortner, D.M., Roussel, M.F., Sherr, C.J., and Ostrowski, M.C. (1992). Mitogenic signaling by colony-stimulating factor 1 and ras issuppressed by the ets-2 DNA-binding domain and restored by myc overexpression. Mol.Cell.Biol. 12, 5355–5362.

    CAS  PubMed  Google Scholar 

  • Lavoie, J.N., L’Allemain, G., Brunet, A., Müller, R., and Pouysségur, J. (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOOGMAPK pathway. J.Biol.Chem. 271, 20608–20616.

    CAS  PubMed  Google Scholar 

  • Leevers, S.J., Paterson, H.F., and Marshall, C.J. (1994). Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414.

    Article  CAS  PubMed  Google Scholar 

  • Liang, P., Averboukh, L., Zhu, W., and Pardee, A.B. (1994). Ras activation of genes: Mob-1 as a model. Proc.Natl.Acad.Sci.U.S.A 91, 12515–12519.

    CAS  PubMed  Google Scholar 

  • Liu, J.J., Chao, J.R., Jiang, M.C., Ng, S.Y., Yen, J.J., and Yang-Yen, H.F. (1995). Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol.Cell Biol. 15, 3654–3663.

    CAS  PubMed  Google Scholar 

  • LoSardo, J.E., Goggin, B.S., Bohoslawec, O., and Neri, A. (1995). Degradation of endothelial cell matrix collagen is correlated with induction of stromelysin by an activated ras oncogene. Clin.Exp.Metastasis 13, 236–248.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, C. (1999). How do small GTPase signal transduction pathways regulate cell cycle entry? Curr.Opin.Cell.Biol. 11, 732–736.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, C.J. (1996). Ras effectors. Curr.Op.Cell Biol. 8, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, C.J., Vousden, K., and Ozanne, B. (1985). The involvement of activated ras genes in determining the transformed phenotype. Proc.R.Soc.Lond B Biol.Sci. 226, 99–106.

    CAS  PubMed  Google Scholar 

  • Matrisian, L.M. (1999). Cancer biology: extracellular proteinases in malignancy. Curr.Biol. 9, R776–R778

    Article  CAS  PubMed  Google Scholar 

  • Mayo, M.W., Wang, C.Y., Cogswell, P.C., Rogers-Graham, K.S., Lowe, S.W., Der, C.J., and Baldwin, A.S.J. (1997). Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science. 278, 1812–1815.

    Article  CAS  PubMed  Google Scholar 

  • Mazure, N.M., Chen, E.Y., Laderoute, K.R., and Giaccia, A.J. (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90, 3322–3331.

    CAS  PubMed  Google Scholar 

  • McCarthy, S.A., Samuels, M.L., Pritchard, C.A., Abraham, J.A., and McMahon, M. (1995). Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev. 9, 1953–1964.

    CAS  PubMed  Google Scholar 

  • McCawley, L.J. and Matrisian, L.M. (2001). Tumor progression: defining the soil round the tumor seed. Curr.Biol. 11, R25–R27

    Article  CAS  PubMed  Google Scholar 

  • McFall, A., Ulku, A., Lambert, Q.T., Kusa, A., Rogers-Graham, K., and Der, CJ. (2001). Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol.Cell Biol. 21, 5488–5499.

    Article  CAS  PubMed  Google Scholar 

  • Meade-Tollin, L.C., Boukamp, P., Fusenig, N.E., Bowen, C.P., Tsang, T.C., and Bowden, G.T. (1998). Differential expression of matrix metalloproteinases in activated c-ras-Ha-transfected immortalized human keratinocytes. Br.J.Cancer 77, 724–730.

    CAS  PubMed  Google Scholar 

  • Medema, R.H., Kops, G.J., Bos, J.L., and Burgering, B.M. (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787.

    CAS  PubMed  Google Scholar 

  • Milanini, J., Vinals, F., Pouyssegur, J., and Pages, G. (1998). p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J.Biol.Chem. 273, 18165–18172.

    Article  CAS  PubMed  Google Scholar 

  • Moon, A., Kim, M.S., Kim, T.G., Kim, S.H., Kim, H.E., Chen, Y.Q., and Kim, H.R. (2000). H-ras, but not N-ras, induces an invasive phenotype in human breast epithelial cells: a role for MMP-2 in the H-ras-induced invasive phenotype. Int.J.Cancer 85, 176–181.

    CAS  PubMed  Google Scholar 

  • Morrison, D.K. and Cutler, R.E., Jr. (1997). The complexity of Raf-1 regulation. Curr.Op.Cell Biol. 9, 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Normanno, N., Bianco, C., De Luca, A., and Salomon, D.S. (2001). The role of EGF-related peptides in tumor growth. Front Biosci. 6, D685–D707

    CAS  PubMed  Google Scholar 

  • Ohnami, S., Matsumoto, N., Nakano, M., Aoki, K., Nagasaki, K., Sugimura, T., Terada, M., and Yoshida, T. (1999). Identification of genes showing differential expression in antisense K-ras-transduced pancreatic cancer cells with suppressed tumorigenicity. Cancer.Res. 59, 5565–5571.

    CAS  PubMed  Google Scholar 

  • Okada, F., Rak, J.W., Croix, B.S., Lieubeau, B., Kaya, M., Roncari, L., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. (1998). Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc.Natl.Acad.Sci.U.S.A. 95, 3609–3614.

    Article  CAS  PubMed  Google Scholar 

  • Oldham, S.M., Clark, G.J., Gangarosa, L.M., Coffey, R.J., Jr., and Der, C.J. (1996). Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc.Natl.Acad.Sci.USA 93, 6924–6928.

    Article  CAS  PubMed  Google Scholar 

  • Oliff, A. (1999). Farnesyltransferase inhibitors: targeting the molecular basis of cancer. Biochim.Biophys.Acta 1423, C19–C30

    CAS  PubMed  Google Scholar 

  • Pruitt, K. and Der, C.J. (2001). Ras and Rho regulation of the cell cycle and transformation. Cancer Lett. 171, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Pruitt, K., Pestell, R.G., and Der, C.J. (2000). Ras inactivation of the retinoblastoma pathway by distinct mechanisms in NIH 3T3 fibroblast and RIE-1 epithelial cells. J.Biol.Chem. 275, 40916–40924.

    Article  CAS  PubMed  Google Scholar 

  • Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. (1995a). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55, 4575–4580.

    CAS  PubMed  Google Scholar 

  • Rak, J., Mitsuhashi, Y., Sheehan, C., Tamir, A., Viloria-Petit, A., Filmus, J., Mansour, S.J., Ahn, N.G., and Kerbel, R.S. (2000b). Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res. 60, 490–498.

    CAS  PubMed  Google Scholar 

  • Reuther, G.W. and Der, C.J. (2000). The Ras branch of small GTPases: Ras family members don’t fall far from the tree. Curr.Opin.Cell Biol. 12, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M.J., Waterfield, M.D., and Downward, J. (1994). Phosphatidylinositol-3-OH kinase as a directtarget of Ras. Nature 370, 527–532.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A., and Downward, J. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457–467.

    CAS  PubMed  Google Scholar 

  • Saez, E., Rutberg, S.E., Mueller, E., Oppenheim, H., Smoluk, J., Yuspa, S.H., and Spiegelman, B.M. (1995). c-fos is required for malignant progression of skin tumors. Cell 82, 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, A., Lehmann, K., Jefferies, H.B., McMahon, M., and Downward, J. (2001). Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15, 981–994.

    Article  CAS  PubMed  Google Scholar 

  • Shao, J., Sheng, H., DuBois, R.N., and Beauchamp, R.D. (2000). Oncogenic Ras-mediated cell growth arrest and apoptosis is associated with increased ubiquitin-dependent cyclin D1 degradation. J.Biol.Chem.

    Google Scholar 

  • Shapiro, S.D. (1998). Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol. 10, 602–608.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C.J, (1996). Cancer cell cycles. Science 274, 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, C.J. and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    CAS  PubMed  Google Scholar 

  • Shields, J.M., Mehta, H., and Der, C.J. (2001a). DNA methylation, and opposing roles of the ERK and p38 mitogen-activated protein kinase cascades, in Ras-mediated downregulation of tropomyosin. Mol. Cell. Biol, submitted

    Google Scholar 

  • Shields, J.M., Pruitt, K., McFall, A., Shaub, Der, and C.J. (2000). Understanding Ras: “it ain’t over ‘til it’s over”. Trends Cell Biol. 10, 147–153.

    Article  CAS  PubMed  Google Scholar 

  • Shields, J.M., Rogers-Graham, K., and Der, C.I. (2001b). Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem 277, 9790–9799.

    PubMed  Google Scholar 

  • Sklar, M.D., Thompson, E., Welsh, M.J., Liebert, M., Harney, J., Grossman, H.B., Smith, M., and Prochownik, E.V, (1991). Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells. Mol.Cell.Biol. 11, 3699–3710.

    CAS  PubMed  Google Scholar 

  • Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M., and Hancock, J.F. (1994). Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467.

    CAS  PubMed  Google Scholar 

  • Takuwa, N. and Takuwa, Y. (2001). Regulation of cell cycle molecules by the Ras effector system. Mol. Cell Endocrinol. 177, 25–33.

    CAS  PubMed  Google Scholar 

  • Thorgeirsson, U.P., Turpeenniemi-Hujanen, T., Williams, J.E., Westin, E.H., Heilman, C.A., Talmadge, J.E., and Liotta, L.A. (1985). NIH/3T3 cells transfected with human tumor DNA containing activated ras oncogenes express the metastatic phenotype in nude mice, Mol.Cell.Biol. 5, 259–262.

    CAS  PubMed  Google Scholar 

  • Tokunaga, T., Tsuchida, T., Kijima, H., Okamoto, K., Oshika, Y., Sawa, N., Ohnishi, Y., Yamazaki, H., Miura, S., Ueyama, Y., and Nakamura, M. (2000). Ribozyme-mediated inactivation of mutant K-ras oncogene in a colon cancer cell line. Br.J.Cancer 83, 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Treiger, B. and Isaacs, J. (1988). Expression of a transfected v-Harvey-ras oncogene in a Dunning rat prostate adenocarcinoma and the development of high metastatic ability. J.Urol. 140, 1580–1586.

    CAS  PubMed  Google Scholar 

  • Vanhaesebroeck, B., Leevers, S.J., Panayotou, G., and Waterfield, M.D. (1997). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends.Biochem.Sci. 22, 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Vousden, K.H., Eccles, S.A., Purvies, H., and Marshall, C.J. (1986), Enhanced spontaneous metastasis of mouse carcinoma cells transfected with an activated c-Ha-ras-1 gene. Int.J.Cancer 37, 425–433.

    CAS  PubMed  Google Scholar 

  • Ward, Y., Wang, W., Woodhouse, E., Linnoila, I., Liotta, L., and Kelly, K. (2001). Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol.Cell Biol. 21, 5958–5969.

    Article  CAS  PubMed  Google Scholar 

  • Wasylyk, B., Hagman, J., and Gutierrez-Hartmann, A. (1998). Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem.Sci. 23, 213–216.

    Article  CAS  PubMed  Google Scholar 

  • Wasylyk, C., Maira, S.M., Sobieszczuk, P., and Wasylyk, B. (1994). Reversion of Ras transformed cells by Ets transdominant mutants. Oncogene 9, 3665–3673.

    CAS  PubMed  Google Scholar 

  • Webb, C.P., Van Aelst, L., Wigler, M.H., and Woude, G.F. (1998). Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc.Natl.Acad.Sci.U.S.A. 95, 8773–8778.

    Article  CAS  PubMed  Google Scholar 

  • Westermarck, J. and Kahari, V.M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 13, 781–792.

    CAS  PubMed  Google Scholar 

  • White, F.C., Benehacene, A., Scheele, J.S., and Kamps, M. (1997). VEGF mRNA is stabilized by ras and tyrosine kinase oncogenes, as well as by UV radiation—evidence for divergent stabilization pathways. Growth Factors 14, 199–212.

    CAS  PubMed  Google Scholar 

  • White, M.A., Nicolette, C., Minden, A., Polverino, A., Van Aelst, L., Karin, M., and Wigler, M.H. (1995). Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541

    Article  CAS  PubMed  Google Scholar 

  • Wick, M., Lucibello, F.C., and Müller, R. (1992). Inhibition of Fos-and Ras-induced transformation by mutant Fos proteins with structural alterations in functionally different domains. Oncogene 7, 859–867.

    CAS  PubMed  Google Scholar 

  • Winston, J.T., Coats, S.R., Wang, Y.-Z., and Pledger, W.J. (1996). Regulation of the cell cycle machinery by oncogenic ras. Oncogene 12, 127–134.

    CAS  PubMed  Google Scholar 

  • Wolfman, A. (2001). Ras isoform-specific signaling: location, location, location. Sci.STKE. 2001, E2

    Google Scholar 

  • Wolthuis, R.M., de Ruiter, N.D., Cool, R.H., and Bos, J.L. (1997). Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 16, 6748–6761.

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse, E.C., Chuaqui, R.F., and Liotta, L.A. (1997). General mechanisms of metastasis. Cancer 80, 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, H., Itoh, F., Senota, A., Adachi, Y., Yoshimoto, M., Endoh, T., Hinoda, Y., Yachi, A., and Imai, K. (1995). Expression of matrix metalloproteinase matrilysin (MMP-7) was induced by activated Ki-ras via AP-1 activation in SW1417 colon cancer cells. J.Clin.Lab Anal. 9, 297–301.

    CAS  PubMed  Google Scholar 

  • Yanagihara, K., Nii, M., Tsumuraya, M., Numoto, M., Seito, T., and Seyama, T. (1995). A radiation-induced murine ovarian granulosa cell tumor line: introduction of v-ras gene potentiates a high metastatic ability. Jpn.J.Cancer Res. 86, 347–356.

    CAS  PubMed  Google Scholar 

  • Yang, J.Q., Zhao, W., Duan, H., Robbins, M.E., Buettner, G.R., Oberley, L.W., and Domann, F.E. (2001). v-Ha-RaS oncogene upregulates the 92-kDa type IV collagenase (MMP-9) gene by increasing cellular superoxide production and activating NF-kappaB. Free Radic.Biol.Med. 31, 520–529.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Averboukh, L., Zhu, W., Zhang, H., Jo, H., Dempsey, P.J., Coffey, R.J., Pardee, A.B., and Liang, P. (1998). Identification of rCop-1, a new member of the CCN protein family, as a negative regulator for cell transformation. Mol.Cell Biol. 18, 6131–6141.

    CAS  PubMed  Google Scholar 

  • Zuber, J., Tchernitsa, O.I., Hinzmann, B., Schmitz, A.C., Grips, M., Hellriegel, M., Sers, C., Rosenthal, A., and Schafer, R. (2000). A genome-widesurvey of RAS transformation targets. Nat.Genet. 24, 144–152.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ülkü, A.S., Der, C.J. (2004). Ras Signaling, Deregulation of Gene Expression and Oncogenesis. In: Frank, D.A. (eds) Signal Transduction in Cancer. Cancer Treatment and Research, vol 115. Springer, Boston, MA. https://doi.org/10.1007/0-306-48158-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48158-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7340-3

  • Online ISBN: 978-0-306-48158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics