Skip to main content

Wnt Signaling in Human Cancer

  • Chapter
Signal Transduction in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 115))

Conclusions

Activation of the Wnt pathway can proceed through at least three downstream signaling cascades mediating various cellular effects. We have described several findings that suggest important roles for the Wnt pathway in the development of human cancer. This role is not completely surprising considering the critical importance of this pathway in directing cell proliferation, migration and differentiation during vertebrate embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ault, K. T., Durmowicz, G., Galione, A., Harger, P. L., & Busa, W. B. (1996). Modulation of Xenopus embryo mesoderm-specific gene expression and dorsoanterior patterning by receptors that activate the phosphatidylinositol cycle signal transduction pathway. Development, 122, 2033–2041.

    CAS  PubMed  Google Scholar 

  • Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T., & Perrimon, N. (1998). Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev, 12, 2610–2622.

    CAS  PubMed  Google Scholar 

  • Barker, N., Morin, P. J., & Clevers, H. (2000). The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res, 77, 1–24.

    CAS  PubMed  Google Scholar 

  • Behrens, J., Jerchow, B., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D., & Birchmeier, W. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3 beta. Science, 280, 596–599.

    Article  CAS  PubMed  Google Scholar 

  • Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J., & Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., & Sondak, V. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536–540.

    Article  CAS  PubMed  Google Scholar 

  • Boutros, M., Paricio, N., Strutt, D. I., & Mlodzik, M. (1998). Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell, 94, 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Brabletz, T., Jung, A., Dag, S., Hlubek, F., & Kirchner, T. (1999). beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J. Path, 155, 1033–1038.

    CAS  PubMed  Google Scholar 

  • Bui, T. D., Tortora, G., Ciardiello, F., & Harris, A. L. (1997). Expression of Wnt5a is downregulated by extracellular matrix and mutated c-Ha-ras in the human mammary epithelial cell line MCF-10A. Biochem Biophys Res Commun, 239, 911–917.

    CAS  PubMed  Google Scholar 

  • Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Dev, 11, 3286–3305.

    CAS  PubMed  Google Scholar 

  • Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., Peifer, M., & Bejsovec, A. (1998). Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 395, 604–608.

    CAS  PubMed  Google Scholar 

  • Clevers, H., & van de Wetering, M. (1997). TCF/LEF factors earn their wings. Trends Genet, 13, 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Cossu, G., & Borello, U. (1999). Wnt signaling and the activation of myogenesis in mammals. EMBO J, 18, 6867–6872.

    Article  CAS  PubMed  Google Scholar 

  • Du, S. J., Purcell, S., Christian, J. L., McGrew, L. L., & Moon, R. T. (1995). Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell. Biol., 15, 2625–2634.

    CAS  PubMed  Google Scholar 

  • Fagotto, F., Gluck, U., & Gumbiner, B. M. (1998). Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol, 8, 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Giese, K., Amsterdam, A., & Grosschedl, R. (1991). DNA-binding properties of the HMG domain of the lymphoid-specific tianscriptional regulator LEF-1. Genes Dev, 5, 2567–2578.

    CAS  PubMed  Google Scholar 

  • Giese, K., Cox, J., & Grosschedl, R. (1992). The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell, 69, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Gieseler, K., Graba, Y., Mariol, M. C., Wilder, E. L., Martinez-Arias, A., Lemaire, P., & Pradel, J. (1999). Antagonist activity of DWnt-4 and wingless in the Drosophila embryonic ventral ectoderm and in heterologous Xenopus assays. Mech Dev, 85, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M., Concordet, J. P., Lassot, I., Albert, I., del los Santos, R., Durand, H., Perret, C., Rubinfeld, B., Margottin, F., Benarous, R., & Polakis, P. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cellz. Curr Biol, 9, 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B., & Polakis, P. (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Current Biology, 8, 573–581.

    Article  CAS  PubMed  Google Scholar 

  • He, T. C., Chan, T. A., Vogelstein, B., & Kinzler, K. W. (1999). PPAR delta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell, 99, 335–345.

    Article  CAS  PubMed  Google Scholar 

  • He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., & Kinzler, K. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • He, X., St-Jeannet, J.-P., Wang, Nathans, Dawid,, &, A. V. (1997). A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science, 275, 1652.

    Article  CAS  PubMed  Google Scholar 

  • Hecht, A., Litterst, C. M., Huber, O., & Kemler, R. (1999). Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem, 274, 18017–18025.

    Article  CAS  PubMed  Google Scholar 

  • Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F., & Kemler, R. (2000). The p300/CBP acetyl transferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J, 19, 1839–1850.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, S. C., Galceran, J., & Grosschedl, R. (1998). Modulation of transcriptional regulation by LEF-1 in response to wnt-1 signaling and association with beta-catenin. Mol Cell Biol, 18, 4807–4818.

    CAS  PubMed  Google Scholar 

  • Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J, 17, 1371–1384.

    Article  CAS  PubMed  Google Scholar 

  • Iozzo, R. V., Eichstetter, I., & Danielson, K. G. (1995). Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res, 55, 3495–3499.

    CAS  PubMed  Google Scholar 

  • Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., Shibuya, H., & Matsumoto, K. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399, 798–802.

    CAS  PubMed  Google Scholar 

  • Jiang, J., & Struhl, G. (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 391, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, M., Dejmek, J., Bendahl, P. O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res, 62, 409–416.

    CAS  PubMed  Google Scholar 

  • Jonsson, M., Smith, K., & Harris, A. L. (1998). Regulation of Wnt5a expression in human mammary cells by protein kinase C activity and the cytoskeleton. Br J Cancer, 78, 430–438.

    CAS  PubMed  Google Scholar 

  • Jue, S. F., Bradley, R. S., Rudnicki, J. A., Varmus, H. E., & Brown, A. M. C. (1992). The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol. Cell. Biol., 12, 321–328.

    CAS  PubMed  Google Scholar 

  • Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K., & Perrimon, N. (1996). The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev., 10, 3116–3128.

    CAS  PubMed  Google Scholar 

  • Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Kishida, S., Yamamoto, H., Hino, S., Ikeda, S., Kishida, M., & Kikuchi, A. (1999). DIX domains of Dvl and Axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Molec Cell Biol, 19, 4414–4422.

    CAS  PubMed  Google Scholar 

  • Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J. Biol. Chem., 273, 10823–10826.

    Article  CAS  PubMed  Google Scholar 

  • Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., & Clevers, H. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet, 19, 379–383.

    CAS  PubMed  Google Scholar 

  • Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., Vogelstein, B., & Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/-colon carcinoma. Science, 275, 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl, M., Sheldahl, L. C., Malbon, C. C., & Moon, R. T. (2000). Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem, 275, 12701–12711.

    CAS  PubMed  Google Scholar 

  • Kuhl, M., Sheldahl, L. C., Park, M., Miller, J, R., & Moon, R. T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16, 279–283.

    CAS  PubMed  Google Scholar 

  • Lejeune, S., Huguet, E. L., Hamby, A., Poulsom, R., & Harris, A. L. (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1, 215–222.

    CAS  PubMed  Google Scholar 

  • Levanon, D., Goldstein, R. E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., Paroush, Z., & Groner, Y. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA, 95, 11590–11595.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Yuan, H. D., Weaver, C. D., Mao, J. H., Farr, G. H., Sussman, D. J., Jonkers, J., Kimelman, D., & Wu, D. Q. (1999). Axin and Frat1 interact with DvI and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J, 18, 4233–4240.

    CAS  PubMed  Google Scholar 

  • Lisovsky, M., Itoh, K., & Sokol, S. Y. (2002). Frizzled Receptors Activate a Novel JNK-Dependent Pathway that May Lead to Apoptosis. Curr Biol, 12, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U,, Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4), 361–365.

    CAS  PubMed  Google Scholar 

  • Liu, T., DeCostanzo, A. J., Liu, X., Wang, H., Hallagan, S., Moon, R. T., & Malbon, C. C. (2001). G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science, 292(5522), 1718–1722.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Liu, X. X., Wang, H. Y., Moon, R. T., & Malbon, C. C. (1999). Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require G alpha(q) and G alpha(o) function. J. Biol Chem., 274, 33539–33544.

    CAS  PubMed  Google Scholar 

  • Liu, X., Liu, T., Slusarski, D. C., Yang-Snyder, J., Malbon, C. C., Moon, R. T., & Wang, H. (1999). Activation of a frizzled-2/beta-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galphao and Galphat. Proc Natl Acad Sci USA 96, 14383–14388.

    CAS  PubMed  Google Scholar 

  • Malbon, C, C., Wang, H., & Moon, R. T. (2001). Wnt signaling and heterotrimeric G-proteins: strange bedfellows or a classic romance? Biochem Biophys Res Commun, 287(3), 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gratchev, A., Ilyas, M., Bodmer, W. F., Moyer, M. P., Riecken, E. O., Buhr, H. J., & Hanski, C. (1999). Target genes of beta-catenin-T cell-factor lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc. Natl Acad. Sci. USA 96,1603–1608.

    CAS  PubMed  Google Scholar 

  • McEwen, D. G., & Peifer, M. (2001). Wnt signaling: the naked truth? Curr Biol, 11(13), R524–526.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, B. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62, 1073

    Article  CAS  PubMed  Google Scholar 

  • Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., Ishihara, S., Nakajima, T., & Fukamizu, A. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. J Biol Chem, 275(45), 35170–35175.

    Article  CAS  PubMed  Google Scholar 

  • Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., & Wainwright, B. J. (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development, 122, 3343–3353.

    CAS  PubMed  Google Scholar 

  • Moon, R. T., Campbell, R. M., Christian, J. L., McGrew, L. L., DeMarais, A. A., Shih, J., & Fraser, S. (1993). Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development, 119, 97–111.

    CAS  PubMed  Google Scholar 

  • Moriguchi, T., Kawachi, K., Kamakura, S., Masuyama, N., Yamanaka, H., Matsumoto, K., Kikuchi, A., & Nishida, E. (1999). Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J Biol Chem, 274, 30957–30962

    Article  CAS  PubMed  Google Scholar 

  • Morin, P. J. (1999). beta-catenin signaling and cancer. Bioessays, 21, 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  • Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., & Kinzler, K. W. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275, 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  • Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B., & Polakis, P. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A, 92, 3046–3050.

    CAS  PubMed  Google Scholar 

  • Neufeld, K. L., Nix, D. A., Bogerd, H., Kang, Y., Beckerle, M. C., Cullen, B. R., & White, R. L. (2000). Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci U S A, 97(22), 12085–12090.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, K. L., & White, R. L. (1997). Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. USA, 94, 3034–3039.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, K. L., Zhang, F., Cullen, B. R., & White, R. L. (2000). APC-mediated downregulation of betacatenin activity involves nuclear sequestration and nuclear export. EMBO Rep, 1, 519–523.

    CAS  PubMed  Google Scholar 

  • Nusse, R., & Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Olson, D. J., & Gibo, D. M. (1998). Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res, 241, 134–141.

    Article  CAS  PubMed  Google Scholar 

  • Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M., & Byers, S. W. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem, 272, 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  • Orsulic, S., & Peifer, M. (1996). Cell-cell signalling: Wingless lands at last. Curr Biol 6, 1363–1667.

    Article  CAS  PubMed  Google Scholar 

  • Pandur, P., & Kuhl, M. (2001). An arrow for wingless to take-off. Bioessays 23(3), 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Paricio, N., Feiguin, F., Boutros, M., Eaton, S., & Mlodzik, M. (1999). The Drosophila STE20-like kinase misshapen is required downstream of the Frizzled receptor in planar polarity signaling. EMBO J, 18, 4669–4678.

    Article  CAS  PubMed  Google Scholar 

  • Parr, B. A., Cornish, V. A., Cybulsky, M. I., & McMahon, A. P. (2001). Wnt7b regulates placental development in mice. Dev Biol, 237, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Parr, B. A., & McMahon, A. P. (1995). Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature, 374, 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Parr, B. A., & McMahon, A. P. (1998). Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature, 395, 707–710.

    CAS  PubMed  Google Scholar 

  • Peters, J. M., McKay, R. M., McKay, J. P., & Graff, J. M. (1999). Casein kinase I transduces Wnt signals. Nature, 401, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.

    CAS  PubMed  Google Scholar 

  • Polakis, P. (1999). The oncogenic activation of beta-catenin. Curr Opin Genet & Dev, 9, 15–21.

    CAS  Google Scholar 

  • Robbins, P. F., El-Gamil, M., Li, Y. F., Kawakami, Y., Loftus, D., Appella, E., & Rosenberg, S. A. (1996). A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med., 183, 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  • Rocheleau, C. E., Yasuda, J., Shin, T. H., Lin, R., Sawa, H., Okano, H., Priess, J. R,, Davis, R. J., & Mello, C, C. (1999). WRM-1 activates the LIT-1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell, 97, 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Roose, J., & Clevers, H. (1999). TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta Rev Cancer, 1424, M23–M37.

    CAS  Google Scholar 

  • Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O., & Clevers, H. (1998). The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressers. Nature, 395, 608–612.

    CAS  PubMed  Google Scholar 

  • Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406, 1009–1012.

    CAS  PubMed  Google Scholar 

  • Rubinfeld, B., Robbins, P., El-Gamil, M., Albert, I., Porfiri, E., & Polakis, P. (1997). Stabilization of b-catenin by genetic defects in melanoma cell lines. Science, 275, 1790–1792.

    Article  CAS  PubMed  Google Scholar 

  • Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., Munemitsu, S., & Polakis, P. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.

    CAS  PubMed  Google Scholar 

  • Saitoh, T., Mine, T., & Katoh, M. (2002). Up-regulation of Frizzled-10 (FZD10) by beta-estradiol in MCF-7 cells and by retinoic acid in NT2 cells. Int J Oncol, 20, 117–120.

    CAS  PubMed  Google Scholar 

  • Sakanaka, C., Leong, P., Xu, L., Harrison, S. D., & Williams, L. T. (1999). Casein kinase I epsilon in the wnt pathway: regulation of beta-catenin function. Proc Natl Acad Sci U S A, 96, 12548–12552.

    Article  CAS  PubMed  Google Scholar 

  • Salomon, D., Sacco, P. A., Roy, S. G., Simcha, I., Johnson, K. R., Wheelock, M. J., & Ben-Ze’ev, A. (1997). Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J Cell Biol, 139, 1325–1335.

    Article  CAS  PubMed  Google Scholar 

  • Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., & Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283, 2089–2091.

    Article  CAS  PubMed  Google Scholar 

  • Sen, M., Chamorro, M., Reifert, J., Corr, M., & Carson, D. A. (2001). Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum, 44, 772–781.

    Article  CAS  PubMed  Google Scholar 

  • Sheldahl, L. C., Park, M., Malbon, C. C., & Moon, R. T. (1999). Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol., 9, 695–698.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ, 8, 1349–1358.

    CAS  PubMed  Google Scholar 

  • Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., & Ben-Ze’ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci. USA, 96, 5522–5527.

    Article  CAS  PubMed  Google Scholar 

  • Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410–413.

    CAS  PubMed  Google Scholar 

  • Slusarski, D. C., Yang-Snyder, J., Busa, W. B., & Moon, R. T. (1997). Modulation of embryonic intracellular Ca2+ signaling by Wnt-5a. Develop. Biol., 182, 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Smalley, M. J., & Dale, T. C. (1999). Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev, 18, 215–230.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K. J., Johnson, K. A., Bryan, T. M., Hill, D., Markowitz, S., Willson, J. K., Paraskeva, C., Petersen, G. M., Hamilton, S. R., Vogelstein, B., & Kinzler, K. W. (1993). The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA, 90, 2846–2850.

    CAS  PubMed  Google Scholar 

  • Smolich, B. D., McMahon, J. A., McMahon, A. P., & Papkoff, J. (1993). Wnt family proteins are secreted and associated with the cell surface. Mol. Cell. Biol., 4, 1267–1275.

    CAS  Google Scholar 

  • Sokol, S. Y. (1999). Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet. Devel., 9, 405–410.

    CAS  Google Scholar 

  • Sparks, A. B., Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1998). Mutational Analysis of the APC/beta-Catenin/Tcf Pathway in Colorectal Cancer. Cancer Research, 58, 1130–1134.

    CAS  PubMed  Google Scholar 

  • Stark, K., Vainio, S., Vassileva, G., & McMahon, A. P. (1994), Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature, 372, 679–684.

    Article  CAS  PubMed  Google Scholar 

  • Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262, 1734–1737.

    CAS  PubMed  Google Scholar 

  • Sun, T. Q., Lu, B., Feng, J. J., Reinhard, C., Jan, Y. N., Fantl, W. J., & Williams, L. T. (2001). PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol, 3, 628–636.

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh, S., Borello, U., Vivarelli, E., Kelly, R., Papkoff, J., Duprez, D., Buckingham, M., & Cossu, G. (1998). Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development, 125, 4155–4162.

    CAS  PubMed  Google Scholar 

  • Takada, S., Stark, K. L., Shea, M. J., Vassileva, G., McMahon, J. A., & McMahon, A. P. (1994). Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes & Dev., 8, 174.

    CAS  Google Scholar 

  • Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol, 149, 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J, P., & He, X. (2000), LDL-receptor-related proteins in Wnt signal transduction. Nature, 407, 530–535.

    CAS  PubMed  Google Scholar 

  • Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422–426.

    CAS  PubMed  Google Scholar 

  • Thomas, K. R., & Capecchi, M. R. (1990). Targeted disruption of the murine int-1proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346, 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Torres, Y.-S., Purcell, DeMarais, McGrew, Moon. (1996), Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol., 133, 1123.

    Article  CAS  PubMed  Google Scholar 

  • Travis, A., Amsterdam, A., Belanger, C., & Grosschedl, R. (1991). LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev, 5, 880–894.

    CAS  PubMed  Google Scholar 

  • Truica, C. I., Byers, S., & Gelmann, B. P. (2000). Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res, 60, 4709–4713.

    CAS  PubMed  Google Scholar 

  • Ueda, M., Gemmill, R. M., West, J., Winn, R., Sugita, M., Tanaka, N., Ueki, M., & Drabkin, H. A. (2001). Mutations of the beta-and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer, 85, 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Vainio, S., Heikkila, M., Kispert, A., Chin, N., & McMahon, A. P. (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature, 397, 405–409.

    CAS  PubMed  Google Scholar 

  • van de Wetering, M., Oosterwegel, M., Dooijes, D., & Clevers, H. (1991). Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J., 10, 123–132.

    PubMed  Google Scholar 

  • Vinson, C. R., & Adler, P. N. (1987). Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature, 329, 549–551.

    Article  CAS  PubMed  Google Scholar 

  • Voeller, H. J., Truica, C. I., & Gelmann, E. P. (1998). beta-catenin mutations in human prostate cancer. Cancer Res, 58, 2520–2523.

    CAS  PubMed  Google Scholar 

  • von Kries, J. P., Winbeck, G., Asbrand, C., Schwarz-Romond, T., Sochnikova, N., DellľOro, A., Behrens, J., & Birchmeier, W. (2000). Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol, 7(9), 800–807.

    Google Scholar 

  • Waltzer, L., & Bienz, M. (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature, 395, 521–525.

    CAS  PubMed  Google Scholar 

  • Weeraratna, A., Jiang,-Y., Lueders, J., Hostetter, G., Rosenblatt, K., Duray, P., Bittner, M., & Trent, J. M. (2002). Wnt5a Signaling Directly Affects Cell Motility and Invasion of Metastatic Melanoma. Cancer Cell, in press.

    Google Scholar 

  • Willert, K., Brink, M., Wodarz, A., Varmus, H., & Nusse, R, (1997). Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J, 16, 3089–3096.

    Article  CAS  PubMed  Google Scholar 

  • Willert, K., Shibamoto, S., & Nusse, R. (1999). Wnt-induced dephosphorylation of Axin releases beta-catenin from the Axin complex. Genes Dev., 13, 1768–1773.

    CAS  PubMed  Google Scholar 

  • Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J., & Harper, J. W. (1999). The SCF beta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in I kappa B alpha and beta-catenin and stimulates I kappa B alpha ubiquitination in vitro. Genes & Dev., 13, 270–283.

    CAS  Google Scholar 

  • Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molec. cell. Biol., 14, 6278–6286.

    CAS  PubMed  Google Scholar 

  • Wong, S. C., Lo, S. F., Lee, K. C., Yam, J. W., Chan, J. K,, & Wendy Hsiao, W. L. (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J Pathol, 196, 145–153

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, T. P., Bradley, A., McMahon, A. P., & Jones, S. (1999). A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development, 126, 1211–1223.

    CAS  PubMed  Google Scholar 

  • Yamamoto, H., Kishida, S., Uochi, T., Ikeda, S., Koyama, S., Asashima, M., & Kikuchi, A. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol, 18, 2867–2875.

    CAS  PubMed  Google Scholar 

  • Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, H., Takada, R., Takada, S., & Nishida, E. (2002). JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates, EMBO Rep, 3, 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F., Li, X., Sharma, M., Sasaki, C. Y., Longo, D, L., Lim, B., & Sun, Z. (2002). Linking beta-catenin to androgen signaling pathway, J Biol Chem, in press.

    Google Scholar 

  • Yokoya, F., Imamoto, N., Tachibana, T., & Yoneda, Y. (1999). beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Molec Biol Cell, 10, 1119–1131.

    CAS  PubMed  Google Scholar 

  • Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L, r., Lee, J. J., Tilghman, S. M., Gumbiner, B. M., & Costantini, F. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell, 90, 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc Natl Acad Sci USA, 97, 12577–12582.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Morin, P.J., Weeraratna, A.T. (2004). Wnt Signaling in Human Cancer. In: Frank, D.A. (eds) Signal Transduction in Cancer. Cancer Treatment and Research, vol 115. Springer, Boston, MA. https://doi.org/10.1007/0-306-48158-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48158-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7340-3

  • Online ISBN: 978-0-306-48158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics