Skip to main content

The PsbS Protein: A Cab-protein with a Function of Its Own

  • Chapter
Regulation of Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 11))

Summary

Chlorophyll a/b binding proteins (Cab proteins) are the most abundant membrane proteins on earth. The intrinsic PsbS protein of Photosystem II is very peculiar among the family of the Cab proteins. It differs from the conventional light harvesting proteins by an additional putative fourth transmembrane helix. PsbS is able to bind chlorophyll a and b, but unlike other chlorophyll-binding proteins it does not take part in the process of light harvesting. It is present in etiolated plants and seems to be stable also in the absence of pigments. There fore, it was suggested to have a function in transient pigment binding and act as a chlorophyll carrier protein, a role that is also postulated for its relatives, the early light induced proteins (ELIPs). Recently the PsbS protein received broad attention when it was shown, that an Arabidopsis thaliana mutant, which is not able to perform non-photochemical quenching, is deficient in the psbS gene. This chapter provides an overview of the data obtained for the PsbS protein so far, emphasizing its similarities and differences to the Cab-antenna proteins and ELIPs and discusses its possible function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska I (1995) Regulation of Early light-inducible protein gene expression by blue and red light in etiolated seedlings involves nuclear and plastid factors. Plant Physiol 107: 1167–1175

    CAS  PubMed  Google Scholar 

  • Adamska I (1997) Blips—light-induced stress proteins. Physiol Plant 100: 794–805

    Article  CAS  Google Scholar 

  • Adamska I and Kloppstech K (1994) The role of early light-induced proteins (ELIPs) during light stress. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, pp 205–219. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Adamska I, Ohad I and Kloppstech K (1992a) Synthesis of the early light-inducible proteinis controlled by blue light and related to light stress. Proc Natl Acad Sci USA 89:2610–2613

    CAS  PubMed  Google Scholar 

  • Adamska I, Kloppstech K and Ohad I (1992b) UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. J Biol Chem 267: 24732–24737

    CAS  PubMed  Google Scholar 

  • Adamska I, Kloppstech K and Ohad I (1993) Early light-inducible protein in pea is stable during light stress but is degraded during recovery at low light intensity. J Biol Chem 268: 5438–5444

    CAS  PubMed  Google Scholar 

  • Adamska I, Funk C, Renger G and Andersson B (1996) Developmental regulation of the PsbS gene expression in spinach seedlings: The role of phytochrome. Plant Mol Biol 31:793–802

    Article  CAS  PubMed  Google Scholar 

  • Adamska I, Roobol-Boza M, Lindahl M and Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260: 453–460

    Article  CAS  PubMed  Google Scholar 

  • Andersson B and Styring S (1991) Photosystem II: Molecular organization, function, and acclimation. Curr Topics Bioenerg 16: 1–69

    CAS  Google Scholar 

  • Apel K (1979) Phytochrome-induced appearance of mRNA activity for the apoprotein of the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur J Biochem 97: 183–188

    Article  CAS  PubMed  Google Scholar 

  • Aro E-M, Hundal T, Carlberg I and Andersson B (1990) In vitro studies on light-induced inhibition of Photosystem II and D1-protein degradation atlow temperatures. Biochim Biophys Acta 1019: 269–275

    CAS  Google Scholar 

  • Barber J and Kühlbrandt W (1999) Photosystem II. Curr Opin Struct Biol 9: 469–475

    Article  CAS  PubMed  Google Scholar 

  • Bassi R and Dainese P (1989) Therole of light harvesting complex II and of the minor chlorophyll a/b proteins in the organisation of the Photosystem II antenna system. Progress Photosynth Res 2: 209–216

    Google Scholar 

  • Bassi R and Simpson D (1987) Chlorophyll-protein complexes of barley Photosystem I. Eur J Biochem 163: 221–230

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Silvestri M, Dainese P, Moya I and Giacometti GM (1991) Effects of non-ionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII). J Photochem Photobiol 9: 335–354

    CAS  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212; 297–303

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Sandona D and Croce R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100: 769–779

    Article  CAS  Google Scholar 

  • Boekema EJ, van Roon H, van Breemen JFL and Dekker JP (1999) Supramolecular organization of Photosystem II and its light-harvesting antenna in partially solubilized Photosystem II membranes. Eur J Biochem 266: 444–452

    Article  CAS  PubMed  Google Scholar 

  • Bowlby NR and Frasch WD (1986) Isolation of a Manganese-Containing Protein complex from Photosystem II Preparations of Spinach. Biochemistry 25: 1402–1407

    Article  CAS  PubMed  Google Scholar 

  • Bowlby NR and Yocum CF (1993) Effects of cholate on Photosystem II: Selective extraction of a 22 kDa polypeptide and modification of QB-siteactivity. Biochim Biophys Acta 1144:271–277

    CAS  Google Scholar 

  • Bricker TM (1990) The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosynth Res 24: 1–13

    Article  CAS  Google Scholar 

  • Buttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992), Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc Natl Acad Sci USA 89: 8135–8139

    CAS  PubMed  Google Scholar 

  • Dainese P and Bassi R (1991) Subunit stoichiometry of the chloroplast Photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem 266: 8136–8142

    CAS  PubMed  Google Scholar 

  • Dainese P, Hoyer-Hansen G and Bassi R (1990) The resolution of chlorophyll a/b binding proteins by a preparative method based on flat bed isoelectric focusing. J Photochem Photobiol 51:693–703

    CAS  Google Scholar 

  • Diner BA and Babcock GT (1996) Primary electron transfer: Z-QA. In: Ort, DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 213–247. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dolganov NA, Bhaya D and Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

    CAS  PubMed  Google Scholar 

  • Funk C and Vermaas W (1999) A Cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 34: 11133–11141

    Google Scholar 

  • Funk C, Schröder WP, Green BR, Renger G and Andersson B (1994) The intrinsic 22 kDa protein is a chlorophyll-binding subunit of Photosystem II. FEES Lett 342: 261–266

    Article  CAS  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G and Andersson B (1995a) The PS II-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34:11133–11141

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995b) The nuclear-encodedchlorophyll-binding Photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270: 30141–30147

    CAS  PubMed  Google Scholar 

  • Ghanotakis DF and Yocum CF (1986) Purification and properties of an oxygen-evolving reaction center complex from Photosystem II membranes. FEBS Lett 197: 244–248

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Demetriou DM and Yocum CF (1987a) Isolation and characterization of an oxygen-evolving Photosystem II reaction center core preparation and a 28 kDa Chl-a-binding protein. Biochim Biophys Acta 891: 15–21

    CAS  Google Scholar 

  • Ghanotakis DF, Waggoner CM, Bowlby NR, Demetrious DM, Babcock GT and Yocum CF (1987b) Comparative structural and catalytic properties of oxygen-evolving Photosystem II preparations. Photosynth Res 14: 191–199

    Article  CAS  Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Phys Plant 99: 197–209

    CAS  Google Scholar 

  • Giuffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    Article  CAS  PubMed  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 47: 685–714

    Article  CAS  PubMed  Google Scholar 

  • Green BR and Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44: 139–148

    Article  CAS  Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Article  CAS  Google Scholar 

  • Green BR and Salter AH (1996) Light regulation of nuclear-encoded thylakoid proteins. In: Andersson, B, Salter AH, and Barber, J (eds) Molecular Genetics of Photosynthesis, pp 75–103. Oxford University Press, New York

    Google Scholar 

  • Green BR, Pichersky E and Kloppstech K (1991) Chlorophyll a/b-binding proteins: An extended family. Trends Plant Sci 16: 181–186

    CAS  Google Scholar 

  • Grimm B, Kruse E and Kloppstech K (1989) Transiently expressed early: light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol 13: 583–593

    Article  CAS  PubMed  Google Scholar 

  • Harrer R, Bassi R, Testi MG and Schäfer C (1998) Nearest-neighbor analysis of a Photosystem II complex from Marchantia polymorpha L. (liverwort), which contains reaction center and antenna proteins. Eur J Biochem 255: 196–205

    Article  CAS  PubMed  Google Scholar 

  • Haworth P, Watson JL and Arntzen CJ (1983) The detection, isolation and characterization of a light-harvesting complex with is specifically associated with Photosystem I. Biochim Biophys Acta 724: 151–158

    CAS  Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    Article  CAS  PubMed  Google Scholar 

  • Henrysson T, Ljungberg U, Franzen LG, Andersson B and Åkerlund HE (1987) Low molecular weight polypeptides in Photosystem II and protein dependent acceptor requirement for Photosystem II. In: Biggins, J (ed) Progress in Photosynthesis Research, Vol II, pp 125–128. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Henrysson T, Schröder WP, Spangfort M and Åkerlund H-E (1989) Isolation and characterization of the chlorophyll a/b protein complex CP29 from spinach. Biochim Biophys Acta 977: 301–308

    CAS  Google Scholar 

  • Hoffman NE, Pichersky E, Malik VS, Castresana C, Ko K, Darr SC and Cashmore AR (1987) A cDNA clone encoding a Photosystem I protein with homology to Photosystem II chlorophyll a/b-binding polypeptides. Proc Natl Acad Sci USA 84: 8844–8848

    CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  CAS  PubMed  Google Scholar 

  • Hundal T, Virgin I, Styring S and Andersson B (1990) Changes in the organization of Photosystem II following light-induced D1-protein degradation. Biochim Biophys Acta 1017: 235–241

    CAS  Google Scholar 

  • Ikeuchi M, Yuasa M and Inoue Y (1985) Simple and discrete isolation of an O2-evolving PS II reaction center complex retaining Mn and the extrinsic 33 kDa protein. FEBS Lett 185: 316–322

    Article  CAS  Google Scholar 

  • Iwasaki T, Saito Y, Harada E, Kasai M, Shoji K, Miyao M and Yamamoto N (1997) Cloning of cDNA encoding the rice 22 kDA protein of Photosystem II (PS II-S) and analysis of light-induced expression of the gene. Gene 185: 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the identification of the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    Article  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    CAS  PubMed  Google Scholar 

  • Karlin-Neuman GA, Sun L and Tobin EM (1988) Expression of light-harvesting Chl a/b protein genes is phytochrome-regulated in etiolated Arabidopsis thaliana seedlings. Plant Physiol 88: 1323–1331

    Google Scholar 

  • Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yocum CF and Pichersky E (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of Photosystem II. FEBS Lett 314: 67–71

    CAS  PubMed  Google Scholar 

  • Kim S, Pichersky E and Yocum CF (1994) Topological studies of spinach 22 kDa protein of Photosystem II. Biochim Biophys Acta 1188: 339–348

    PubMed  Google Scholar 

  • Kim S J, Jansson S, Hoffman NE, Robinson C and Mant A (1999) Distinct ‘assisted’ and’ spontaneous’ mechanisms for the insertion of polytopic chlorophyll-binding proteins into the thylakoid membrane. J Biol Chem 274: 4715–4721

    CAS  PubMed  Google Scholar 

  • Kleima FJ, Hobe S, Calkoen F, Urbanus ML, Peterman EJG, van Grondelle R, Paulsen H and van Amerongen H (1999) Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences. Biochemistry 38: 6587–6596

    Article  CAS  PubMed  Google Scholar 

  • Klösgen RB (1997) Protein transport into and across the thylakoid membrane. J Photochem Photobiol 38: 1–9

    Google Scholar 

  • Krol M, Spangfort MD, Huner NPA, Öquist G, Gustafsson P and Jansson S (1995) Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll Mess barley mutant. Plant Physiol 70: 1242–1248

    Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Li X, Henry R, Yuan J, Cline K and Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SPR54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci USA 92:3789–3793

    CAS  PubMed  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenqvist M, Jansson S and Niyogi K (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    CAS  PubMed  Google Scholar 

  • Lindahl M, Funk C, Webster J, Bingsmark S, Adamska I and Andersson B (1997) Expression of ELIPs and PsbS protein in spinach during acclimative reduction of the Photosystem II antenna in response to increased light intensities. Photosynth Res 54: 227–236

    Article  CAS  Google Scholar 

  • Ljungberg U, Åkerlund H-E, Larsson C and Andersson B (1984) Identification of polypeptides associated with the 23 and 33 kDa proteins of photosynthetic oxygen evolution. Biochim Biophys Acta 767: 145–152

    CAS  Google Scholar 

  • Ljungberg U, Åkerlund H-E and Andersson B (1986) Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant Photosystem 2. Eur J Biochem 158: 477–482

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA and Kaufman LS (1989) Blue light regulation of transcription for nuclear genes in pea. Proc Natl Acad Sci USA 86:4492–4495

    CAS  Google Scholar 

  • Merrit S, Ernfors P, Ghanotakis DF and Yocum CF (1987) Binding of the 17 and 23 kDa water-soluble polypeptides to a highly-resolved PS II reaction center complex. In: Biggins, J (ed) Progress in Photosynthesis Research, Vol I, pp 689–692. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Mishra RK and Ghanotakis DF (1993) Selective extraction of 22 kDa and 10 kDa polypeptides from Photosystem II without removal of 23 kDa and 17 kDa extrinsic proteins. Photosynth Res 36: 11–16

    Article  CAS  Google Scholar 

  • Moore M, Harrison MS, Peterson EC and Henry R (2000) Chloroplast Oxalp homolog Albino3 is required for posttranslational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275: 1529–1532

    CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000a) 3D map of the plant Photosystem two supercomplex obtained by cryoelectron microscopy and single particle analysis in higher plant PS II structure and membrane organisation. Nature Struct Biol 7: 44–47

    CAS  PubMed  Google Scholar 

  • Nield J, Funk C and Barber J (2000b) Supermolecular Structure of Photosystem Two and Localization of the PsbS Protein. Phil Trans R Soc Lond B 355: 1337–1344

    CAS  Google Scholar 

  • Nilsson F, Andersson B and Jansson C (1990) Photosystem II characteristics of a constructed Synechocystis 6803 mutant lacking synthesis of the D1 polypeptide. Plant Mol Biol 14: 1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Ottander C, Campbell D and Öquist G (1995) Seasonal changes in Photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197: 176–183

    Article  CAS  Google Scholar 

  • Pagano A, Cinque G and Bassi R (1998) In vitro reconstitution of the recombinant Photosystem II light harvesting complex CP24 (Lhcb6) and its spectroscopic characterization. J Biol Chem 273: 17154–17165

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H (1997) Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol Plant 100: 760–768

    Article  CAS  Google Scholar 

  • Paulsen H, Rümler U and Rudiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181: 204–211

    CAS  Google Scholar 

  • Peter OF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745–16754

    CAS  PubMed  Google Scholar 

  • Pichersky E and Jansson S (1996) The light-harvesting chlorophyll a/b-binding polypeptides and their genes in angiosperm and gymnosperm species. In: Ort, DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 507–521. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Renger G (1997) Mechanistic and structural aspects of photosynthetic water oxidation. Physiol Plant 100: 828–841

    Article  CAS  Google Scholar 

  • Rhee KH (2001) Photosystem II: The solid structural E+a. Ann Rev Biophys Biomol Struct 30: 307–328

    CAS  Google Scholar 

  • Robinson C and Klögen RB (1994) Targeting of proteins into and across the thylakoid membrane—a multitude of mechanisms. Plant Mol Biol 26: 15–24

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Hynds PJ, Robinson D and Mant A (1998) Multiple pathways for the targeting of thylakoid proteins in chloroplasts. Plant Mol Biol 38: 209–221

    CAS  PubMed  Google Scholar 

  • Ros F, Bassi R and Paulsen H (1998) Pigment binding properties of the recombinant Photosystem II subunit CP26 reconstituted in vitro. Eur J Biochem 253: 653–658

    Article  CAS  PubMed  Google Scholar 

  • Simpson DJ and Koetzel J (1996) Light-harvesting complexes of plants and algae: Introduction, survey and nomenclature. In: Ort, DR and Yocum, CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 493–506. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stockhaus J, Hofer M, Renger G, Westhoff P, Wydrzynski T and Willmitzer L (1990) Anti-sense RNA efficiently inhibits formation of the 10 kd polypeptide of Photosystem II in transgenic potato plants: Analysis of the role of the 10 kd protein. EMBO J 9: 3013–3021

    CAS  PubMed  Google Scholar 

  • Tang X-S and Satoh K (1985) The oxygen-evolving Photosystem II core complex FEBS Lett 179: 60–64

    Article  CAS  Google Scholar 

  • Thompson SJ, Kim SJ and Robinson C (1998) Sec-independent insertion of thylakoid membrane proteins: analysis of insertion forces and identification of a loop intermediate involving the signal peptide. J Biol Chem 273: 18979–18983

    CAS  PubMed  Google Scholar 

  • von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • Wallbraun M, Kim S, Green BR, Piechulla B and Pichersky E (1994) Nucleotide sequence of a tomato psbS gene. Plant Physiol 106: 1703–1704

    Article  CAS  PubMed  Google Scholar 

  • Wedel N, Klein R, Ljungberg U, Andersson B and Herrmann RG (1992) The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of Photosystem II. FEBS Lett 314:61–66

    CAS  PubMed  Google Scholar 

  • White MJ, Kaufman LS, Horwitz BA, Briggs WR and Thompson WF (1995) Individual members of the Cab gene family differ widely in fluence response. Plant Physiol 107: 161–165

    CAS  PubMed  Google Scholar 

  • Wyrich R, Dressen U, Brockmann S, Streubel M, Chang C, Qiang D, Paterson AH and Westhoff P (1998) The molecular basis of C4 photosynthesis in sorghum: isolation, characterization and RFLP mapping of mesophyll-and bundlesheath-specific cDNAs obtainedby differential screening. Plant Mol Biol 37: 319–335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Funk, C. (2001). The PsbS Protein: A Cab-protein with a Function of Its Own. In: Aro, EM., Andersson, B. (eds) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, vol 11. Springer, Dordrecht. https://doi.org/10.1007/0-306-48148-0_26

Download citation

  • DOI: https://doi.org/10.1007/0-306-48148-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6332-3

  • Online ISBN: 978-0-306-48148-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics