Skip to main content

Molecular Organization of Acyl Lipids in Photosynthetic Membranes of Higher Plants

  • Chapter
Lipids in Photosynthesis: Structure, Function and Genetics

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 6))

Summary

The extreme diversity of thylakoid acyl lipids and their unique (physico)chemical characteristics suggest that they are arranged, at the molecular level, as distinct membrane domains. Several experimental approaches, including fractionation of subchloroplast particles, separation of appressed and non-appressed regions of the thylakoids and purification of (chlorophyll-) protein complexes, show that acyl lipids are asymmetrically distributed within the plane of the membrane and that some of them (generally those more saturated than the bulk lipids) are tightly bound to proteins. However, conclusions based only on such evidence should be viewed with caution because the use of detergents to obtain subparticles or lipoprotein complexes may result in differential displacements of acyl lipids and pigments non-covalently bound to proteins. In this respect, the use of cyclodextrins as a new tool for the controlled lipid depletion of thylakoid membranes is discussed in some detail. These molecules are cyclic oligosaccharides consisting of six to eight glucopyranose units linked by α (1–4) bonds which adopt a torus shape and are able to bind a range of small guest molecules of poor water solubility (e.g., lipids) within their hydrophobic cavity to form a water soluble guest-cyclodextrin inclusion complex. The advantage of such an approach is to avoid the use of detergents. The detection of lipids by antibodies directed to individual lipids bound to the surface of the thylakoid membrane, to subchloroplast particles or to individual proteins is also presented.

The transmembrane distribution of acyl lipids in the thylakoid membrane has been extensively studied. We report here on the different experimental approaches, with special emphasis on the enzymatic one which consists of digesting lipids, stepwise and selectively, in the two membrane monolayers. The results indicate that the outer monolayer is highly enriched in MGDG and PG while the inner one contains high levels of DGDG, thus confirming the general sidedness of thylakoid membrane components. The modulation of the unsaturation/saturation ratio of acyl lipids by catalytic hydrogenation is also described in order to assess the effect of the unsaturation degree on thylakoid structures.

The problem of transfer of (galacto)lipids from their sites of synthesis (the envelope membranes) to the thylakoid network is an intriguing one. Recent data favor the hypothesis that the intrachloroplastic lipid export is primarily achieved by a mechanism involving transient fusions between inner envelope and thylakoid membranes. This new proposal points to the key role of chloroplast envelope membranes in the establishment of lipid asymmetry in thylakoid membranes. Finally, several paradigms of the thylakoid membrane molecular organization based on the known lipid topology and properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    CAS  PubMed  Google Scholar 

  • Anderson JM (1975) The molecular organization of chloroplast thylakoids. Biochim Biophys Acta 416: 191–235

    CAS  PubMed  Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440

    CAS  PubMed  Google Scholar 

  • Andrews J and Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts. Pathway and localization. Plant Physiol 79: 259–265

    CAS  Google Scholar 

  • Andrews J, Ohlrogge JB and Keegstra K (1985) Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78: 459–465

    CAS  Google Scholar 

  • Archer EK and Keegstra K (1990) Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomem 22: 789–810

    CAS  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33: 261–295

    Article  CAS  Google Scholar 

  • Barber J and Gounaris K (1986) What role does sulpholipid play within the thylakoid membrane? Photosynth Res 9: 239–249

    Article  CAS  Google Scholar 

  • Bednarz J, Radunz A and Schmid GH (1988) lipid composition of Photosystem I and II in the tobacco mutant Nicotiana tabacum NC 95. Z Naturforsch 43c: 423–430

    Google Scholar 

  • Bekers O, Uijendaal EV, Beijnen JH, Bult A and Underberg WJM (1991) Cyclodextrins in the pharmaceutical field. Drug Development and Industrial Pharm 17: 1503–1549

    CAS  Google Scholar 

  • Bertrams M, Wrage K and Heinz E (1981) lipid labelling in intact chloroplasts from exogenous nucleotide precursors. Z Naturforsch 36c: 62–70

    CAS  Google Scholar 

  • Bishop DG (1983) Functional role of plant membrane lipids. In: Thompson WW, Mudd JB and Gibbs M (eds) Biosynthesis and Function of Plant Lipids, pp. 81–103. Am Soc Plant Physiol, Rockville, USA

    Google Scholar 

  • Bishop DG, Kenrick JR, Bayston JH, MacPherson AS and Johns SR (1980) Monolayer properties of chloroplast lipids. Biochim Biophys Acta 602: 248–259

    CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. I. Electrophoretic and immunochemical analyses. J Biol Chem 258:13273–13280

    CAS  PubMed  Google Scholar 

  • Burke JJ, Wilson RF and Swafford R (1982) Characterization of chloroplasts isolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L. Plant Physiol 70: 24–29

    CAS  Google Scholar 

  • Carde JP, Joyard J and Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44: 315–324

    Google Scholar 

  • Chapman D and Quinn PJ (1976) A method for the modulation of membrane fluidity: Homogeneous catalytic hydrogenation of phospholipids and phospholipid-water model biomembranes. Proc Natl Acad Sci US 73: 3971–3975

    CAS  Google Scholar 

  • Chapman DJ, De Felice J and Barber J (1984) lipids at sites of quinone and herbicide interaction with the photosystem two pigment-protein complex of chloroplast thylakoids. In: Siegenthaler PA and Eichenberger W (eds) Structure, Function and Metabolism of Plant Lipids, pp 457–464. Elsevier/North-Holland Biomedical Press, Amsterdam, New York

    Google Scholar 

  • Costes C, Bazier R and Lechevallier D (1972) Rôle structural des lipides dans les membranes des chloroplastes de Blé. Physiol Vég 10: 291–317

    CAS  Google Scholar 

  • Costes C, Bazier R, Baltscheffsky H and Hallberg C (1978) Mild extraction of lipids and pigments from Rhodospirillum rubrum chromatophores. Plant Sci Lett 12: 241–249

    CAS  Google Scholar 

  • de Kruijff B, Pilon R, van’t Hof R and Demel R (1998) lipidprotein interactions in chloroplast protein import. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 191–208. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dorne AJ, Block MA, Joyard J. and Douce R (1982) The galactolipid:galactolipid galactosyltransferase is located on the outer surface of the outer membrane of the chloroplast envelope. FEBS Lett 145: 30–34

    Article  CAS  Google Scholar 

  • Dorne AJ, Joyard J and Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87: 71–74

    CAS  PubMed  Google Scholar 

  • Doyle MF and Yu CA (1985) Preparation and reconstitution of a phospholipid deficient cytochrome b6-f complex from spinach chloroplasts. Biochem Biophys Res Commun 131: 700–706

    Article  CAS  PubMed  Google Scholar 

  • Dubacq JP and Trémolières A (1983) Occurrence and function of phosphatidylglycerol containing Δ3-trans-hexadecenoic acid in photosynthetic lamellae. Physiol Vég 21: 293–312

    CAS  Google Scholar 

  • Duchêne S, Smutny J and Siegenthaler PA (1996) Topological and photosynthetic functional sidedness of phospholipids in spinach thylakoid membrane, inside-out and right-side-out vesicles. Experientia 52: S08–12

    Google Scholar 

  • Dyer TA (1984) The chloroplast genome: Its nature and role in development. In: Baker NR and Barber J (eds) Chloroplast Biogenesis, pp 23–69. Elsevier, Amsterdam

    Google Scholar 

  • Eichenberger W, Schaffner JC and Boschetti A (1977) Characterization of proteins and lipids of Photosystem I and II particles from Chlamydomonas reinhardi. FEBS Lett 84:144–148

    Article  CAS  Google Scholar 

  • Etemadi A-H (1980) Membrane asymmetry. A survey and critical appraisal of the methodology. II. Methods for assessing the unequal distribution of lipids. Biochim Biophys Acta 604: 423–475

    CAS  PubMed  Google Scholar 

  • Ford RC and Barber J (1983) Time-dependent decay and anisotropy of fluorescence from diphenylhexatriene embedded in the chloroplast thylakoid membrane. Biochim Biophys Acta 722: 341–348

    CAS  Google Scholar 

  • Giroud C and Siegenthaler PA (1988) Development of oat prothylakoids into thylakoids during greening does not change transmembrane galactolipid asymmetry but preserves the thylakoid bilayer. Plant Physiol 88: 412–417

    CAS  Google Scholar 

  • Gounaris K and Barber J (1983) Monogalactosyldiacylglycerol: the most abundant polar lipid in nature. Trends Biochem Sci 8: 378–381

    Article  CAS  Google Scholar 

  • Gounaris K and Barber J (1985) Isolation and characterisation of a Photosystem II reaction centre lipoprotein complex. FEBS Lett 188: 68–72

    Article  CAS  Google Scholar 

  • Gounaris K, Sundby C, Andersson B and Barber J (1983) Lateral heterogeneity of polar lipids in the thylakoid membranes of spinach chloroplasts. FEBS Lett 156: 170–174

    Article  CAS  Google Scholar 

  • Gounaris K, Barber J and Harwood JL (1986) The thylakoid membranes of higher plant chloroplasts. Biochem J 237: 313–326

    CAS  PubMed  Google Scholar 

  • Haase R, Unthan M, Couturier P, Radunz A and Schmid GH (1993) Determination of glycolipids, sulfolipid and phospholipids in the thylakoid membrane. Z Naturforsch 48c: 623–631

    Google Scholar 

  • Heber U and Heldt HW (1981) The chloroplast envelope: Structure, function, and role in leaf metabolism. Annu Rev Plant Physiol 32: 139–168

    Article  CAS  Google Scholar 

  • Heemskerk JWM and Wintermans JFGM (1987) Role of the chloroplast in the leaf acyl-lipid synthesis. Physiol Plant 70: 558–568

    CAS  Google Scholar 

  • Heemskerk JWM, Storz T, Schmidt RR and Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants. Plant Physiol 93: 1286–1294

    CAS  Google Scholar 

  • Heinz E and Siefermann-Harms D (1981) Are galactolipids integral components of the chlorophyll-protein complexes in spinach thylakoids? FEBS Lett 124: 105–111

    Article  CAS  Google Scholar 

  • Helenius A and Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415: 29–79

    CAS  PubMed  Google Scholar 

  • Henry LEA, Mikkelsen JD and Møller BL (1983) Pigment and acyl lipid composition of Photosystem I and II vesicles and of photosynthetic mutants in barley. Carlsberg Res Commun 48: 131–148

    CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13:3423–3429

    CAS  PubMed  Google Scholar 

  • Hobe S, Kuttkat A, Förster R and Paulsen H (1995) Assembly of trimeric light-harvesting chlorophyll a/b complex in vitro. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol 1, pp 47–52. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Horváth G, Droppa M, Szito T, Mustardy LA, Horváth LI and Vigh L (1986a) Homogeneous catalytic hydrogenation of lipids in the photosynthetic membrane: Effects on membrane structure and photosynthetic activity. Biochim Biophys Acta 849: 325–336

    Google Scholar 

  • Horváth G, Mansourian AR, Vigh L, Thomas PG, Joo F and Quinn PJ (1986b) Homogeneous catalytic hydrogenation of the polar lipids of pea chloroplasts in situ and the effects on lipid polymorphism. Chem Phys Lipids 39: 251–264

    Google Scholar 

  • Irie T, Fukunaga K and Pitha J (1992) Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. J Pharm Sci 81: 521–523

    CAS  PubMed  Google Scholar 

  • Ivancich A, Horváth LI, Droppa M, Horváth G and Farkas T (1994) Spin label EPR study of lipid solvation of supramolecular photosynthetic protein complexes in thylakoids. Biochim Biophys Acta 1196:51–56

    CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins, Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1976) Préparation et activités enzymatiques de l’envelope des chloroplastes d’Epinard. Physiol Vég 14: 31–48

    CAS  Google Scholar 

  • Joyard J and Douce R (1977) Site of synthesis of phosphatidic acid and diacylglycerol in spinach chloroplasts. Biochim Biophys Acta 486: 273–285

    CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1987) Galactolipid synthesis. In: Stumpf PK (ed) The Biochemistry of Plants. A Comprehensive Treatise. Vol 9: Lipids: Structure and Function, pp 215–274. Academic Press Inc, New York

    Google Scholar 

  • Joyard J, Douce R, Siebertz HP and Heinz E (1980) Distribution of radioactive lipids between envelopes and thylakoids from chloroplasts labelled in vivo. Eur J Biochem 108: 171–176

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Block MA and Douce R (1991) Molecular aspects of plastid envelope biochemistry. Eur J Biochem 199: 489–509

    Article  CAS  PubMed  Google Scholar 

  • Kruse O and Schmid GH (1995) The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from Photosystem II-particles of the cyanobacterium Oscillatoria chalybea. Z Naturforsch 50c: 380–390

    Google Scholar 

  • Kruse O, Radunz A and Schmid GH (1994) Phosphatidylglycerol and β-carotene bound onto the D1-core peptide of Photosystem II in the filamentous cyanobacterium Oscillatoria chalybea. Z Naturforsch 49c: 115–124

    Google Scholar 

  • Li G, Knowles PF, Murphy DJ, Nishida I and Marsh D (1989) Spin label saturation transfer ESR studies of lipid-protein interactions in thylakoid membranes. Biochemistry 28: 7446–7452

    CAS  PubMed  Google Scholar 

  • Makewicz A, Radunz A and Schmid GH (1995) Structural modifications of the photosynthetic apparatus in the region of Photosystem I in Nicotiana tabacum as a consequence of an increased CO2-content of the atmosphere. Z Naturforsch 50c: 511–520

    Google Scholar 

  • Mattoo AK and Edelman M (1987) Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-Kd herbicide-binding protein. Proc Natl Acad Sci USA 84:1497–1501

    CAS  PubMed  Google Scholar 

  • Mayor JP, Török Z, Siegenthaler PA and Vigh L (1992) Differential accessibility of a hydrogenation catalyst to acyl lipids in thylakoid membranes from atrazine-resistant and — susceptible Solanum nigrum biotypes. Plant Cell Physiol 33: 209–215

    CAS  Google Scholar 

  • Menikh A and Fragata M (1993) Fourier-transform infrared spectroscopic study of ion-binding and intramolecular interactions in the polar head of digalactosyldiacylglycerol. Eur Biophys J 22: 249–258

    Article  CAS  PubMed  Google Scholar 

  • Millner PA and Barber J (1984) Plastoquinone as a mobile redox carrier in the photosynthetic membrane. FEBS Lett 169: 1–6

    Article  CAS  Google Scholar 

  • Morré DJ, Morré JT, Morré SR, Sundqvist C and Sandelius AS (1991) Chloroplast biogenesis. Cell-free transfer of envelope monogalactosylglycerides to thylakoids. Biochim Biophys Acta 1070: 437–445

    PubMed  Google Scholar 

  • Mudd JB and DeZacks R (1981) Synthesis of phosphatidylglycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys 209: 584–591

    Article  CAS  PubMed  Google Scholar 

  • Murata N and Nishida I (1990) lipids in relation to chilling sensitivity of plants. In: Wang CY (ed) Chilling Injury of Horticultural Crops, pp 181–199. CRC Press, Boca Raton, FL

    Google Scholar 

  • Murata N, Higashi S-I and Fujimura Y (1990) Glycerolipids in various preparations of Photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    CAS  Google Scholar 

  • Murphy DJ (1982a) The biosynthesis of photosynthetic membrane lipid precursors in higher plants and its integration with photosynthetic carbon assimilation. In: Wintermans JFGM and Kuiper PJC (eds) Biochemistry and Metabolism of Plant lipids, pp 51–56. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Murphy DJ (1982b) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett 150: 19–26

    Article  CAS  Google Scholar 

  • Murphy D (1986a) The molecular organisation of the photosynthetic membranes of higher plants. Biochim Biophys Acta 864: 33–94

    CAS  Google Scholar 

  • Murphy D (1986b) Structural properties and molecular organization of the acyl lipids of photosynthetic membranes. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19, Photosynthesis III: Photosynthetic Membranes and Light Harvesting Systems, pp 713–725. Springer-Verlag, Berlin

    Google Scholar 

  • Murphy D and Woodrow IE (1983) Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and its implications for the molecular organisation of photosynthetic membranes. Biochim Biophys Acta 725: 104–112

    CAS  Google Scholar 

  • Mustardy L, Los DA, Gombos Z, Tsvetkova N, Nishida I and Murata N (1996) Intracellular distribution of fatty acid desaturases in cyanobacterial cells and higher-plant chloroplasts. In: Williams JP, Khan MU and Lem NW (eds) Physiology, Biochemistry and Molecular Biology of Plant lipids, pp 87–89. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nakanishi K, Nadai T, Masada M and Miyajima K (1992) Effect of cyclodextrins on biological membrane. II. Mechanism of enhancement on the intestinal absorption of non-absorbable drug by cyclodextrins. Chem Pharm Bull 40: 1252–1256

    CAS  PubMed  Google Scholar 

  • Nishihara M, Yokota K and Kito M (1980) Lipid molecular species composition of thylakoid membranes. Biochim Biophys Acta 617: 12–19

    CAS  PubMed  Google Scholar 

  • Nussberger S, Dörr K, Wang DN and Kühlbrandt W (1993) lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    CAS  PubMed  Google Scholar 

  • Ohnishi M and Thompson Jr GA (1991) Biosynthesis of the unique trans-Δ3-hexadecenoic acid component of chloroplast phosphatidylglycerol: evidence concerning its site and mechanism of formation. Arch Biochem Biophys 288: 591–599

    Article  CAS  PubMed  Google Scholar 

  • Ohtani Y, Irie T, Uekama K, Fukunaga K and Pitha J (1989) Differential effects of α-, β-and γ-cyclodextrins on human erythrocytes. Eur J Biochem 186: 17–22

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Koizumi K, Ogata K and Ohfuji T (1989) Inclusion complexes of lipids with branched cyclodextrins. Chem Pharm Bull 37: 3096–3099

    CAS  Google Scholar 

  • Omata T and Murata N (1986) Glucolipid synthesis activities in cytoplasmic and thylakoid membranes from the cyanobacterium Anacystis nidulans. Plant Cell Physiol 27: 485–490

    CAS  Google Scholar 

  • Ouijja A, Farineau N, Cautrel C and Guillot-Salomon T (1988) Biochemical analysis and photosynthetic activity of chloroplasts and Photosystem II particles from a barley mutant lacking chlorophyll b. Biochim Biophys Acta 932: 97–106

    CAS  Google Scholar 

  • Pick U, Gounaris K, Admon A and Barber J (1984) Activation of the CF0-CF1, ATP synthase from spinach chloroplasts by chloroplast lipids. Biochim Biophys Acta 765: 12–20

    CAS  Google Scholar 

  • Pick U, Gounaris K, Weiss M and Barber J (1985) Tightly bound sulpholipids in chloroplast CF0-CF1. Biochim Biophys Acta 808: 415–420

    CAS  Google Scholar 

  • Pick U, Weiss M, Gounaris K and Barber J (1987) The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta 891: 28–39

    CAS  Google Scholar 

  • Quinn PJ and Williams WP (1983) The structural role of lipids in photosynthetic membranes. Biochim Biophys Acta 737: 223–266

    CAS  Google Scholar 

  • Quinn PJ, Joo F and Vigh L (1989) The role of unsaturated lipids in membrane structure and stability. Prog Biophys Mol Biol 53:71–103

    CAS  PubMed  Google Scholar 

  • Radunz A (1971) Phosphatidylglycerin-antiserum und seine Reaktionen mil Chloroplasten. Z Naturforsch 26b: 916–919

    Google Scholar 

  • Radunz A (1972) Lokalisierung des Monogalaktosyldiglycerids in Thylakoidmembranen mit serologischen Methoden. Z Naturforsch 27b: 822–826

    Google Scholar 

  • Radunz A (1976) Localization of the tri-and digalactosyl diglyceride in the thylakoid membrane with serological methods. Z Naturforsch 31c: 589–593

    CAS  Google Scholar 

  • Radunz A (1977) Binding of antibodies onto the thylakoid membrane. II. Distribution of lipids and proteins at the outer surface of the thylakoid membrane. Z Naturforsch 32c: 597–599

    CAS  Google Scholar 

  • Radunz A (1981) Application of antibodies in the analysis of structural configuration of thylakoid membranes. Ber Deutsch Bot Ges 94: 477–489

    Google Scholar 

  • Radunz A and Berzborn R (1970) Antibodies against sulphoquinovosyl-diacyl glycerol and their reactions with chloroplasts. Z Naturforsch 25b: 412–419

    Google Scholar 

  • Radunz A and Schmid GH (1989) Comparative immunological studies on the CF1-complex in mutants of N. tabacum, exhibiting different capacities for photosynthesis and photorespiration and different chloroplast structures. Z Naturforsch 44c: 689–697

    Google Scholar 

  • Radunz A, Bader KP and Schmid GH (1984) Serological investigations of the function of galactolipids in the thylakoid membrane. Z Pflanzenphysiol 114: 227–231

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1980) Role of lipids in functions of photosynthetic membranes revealed by treatment with lipolytic acyl hydrolase. Eur J Biochem 110: 179–187

    Article  CAS  PubMed  Google Scholar 

  • Rawyler A and Siegenthaler PA (1985) Transversal localization of monogalactosyldiacylglycerol and digalactosyldiacylglycerol in spinach thylakoid membranes. Biochim Biophys Acta 815: 287–298

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1989) Change in the molecular organization of monogalactosyldiacylglycerol between resting and functioning thylakoid membranes. Involvement of the CF0-CF1-ATP synthetase. Biochim Biophys Acta 975: 283–292

    CAS  Google Scholar 

  • Rawyler A and Siegenthaler PA (1996) Cyclodextrins: A new tool for the controlled lipid depletion of thylakoid membranes. Biochim Biophys Acta 1278: 89–97

    PubMed  Google Scholar 

  • Rawyler A, Henry LEA and Siegenthaler PA (1980) Acyl and pigment lipid composition of two chlorophyll-proteins. Carlsberg Res Commun 45: 443–451

    CAS  Google Scholar 

  • Rawyler A, Unitt MD, Giroud C, Davies H, Mayor JP, Harwood JL and Siegenthaler PA (1987) The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. Photosynth Res 11:3–13

    Article  CAS  Google Scholar 

  • Rawyler A, Meylan M and Siegenthaler PA (1992) Galactolipid export from envelope to thylakoid membranes in intact chloroplasts. I. Characterization and involvement in thylakoid lipid asymmetry. Biochim Biophys Acta 1104: 331–341

    CAS  PubMed  Google Scholar 

  • Rawyler A, Meylan-Bettex M and Siegenthaler PA (1995) (Galacto)lipid export from envelope to thylakoid membranes in intact chloroplasts. II. A general process with a key role for the envelope in the establishment of lipid asymmetry in thylakoid membranes. Biochim Biophys Acta 1233:123–133

    PubMed  Google Scholar 

  • Rémy R, Trémolières A, Duval JC, Ambard-Bretteville F and Dubacq JP (1982) Study of the supramolecular organization of light-harvesting chlorophyll protein (LHCP). FEBS Lett 137: 271–275

    Google Scholar 

  • Roelofsen B and Zwaal RFA (1976) The use of phospholipases in the determination of asymmetric phospholipid distribution in membranes. In: Korn ED (ed) Methods in Membrane Biology, Vol 7, pp 147–177. Plenum Press, New York

    Google Scholar 

  • Roughan PG (1985) Phosphatidylglycerol and chilling sensitivity in plants. Plant Physiol 77: 740–746

    CAS  Google Scholar 

  • Sakai WS, Yamamoto HY, Miyazaki T and Ross JW (1983) A model for chloroplast thylakoid membranes involving orderly arrangements of negatively charged lipidic particles containing sulphoquinovosyldiacylglycerol. FEBS Lett 158: 203–207

    Article  CAS  Google Scholar 

  • Sandelius AS and Selstam E (1984) Localization of galactolipid biosynthesis in etioplasts isolated from dark-grown wheat (Triticum aestivum L.). Plant Physiol 76: 1041–1046

    CAS  Google Scholar 

  • Schmidt H and Heinz E (1990) Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc Nat Acad Sci USA 87: 9477–9480

    CAS  PubMed  Google Scholar 

  • Seifert U and Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose: diacylglycerol sulfoquinovosyl transferase from chloroplast envelopes. Bot Acta 205: 197–205

    Google Scholar 

  • Selstam E and Widell-Wigge A (1993) Chloroplast lipids and the assembly of membranes. In: Sundqvist C and Ryberg M (eds) Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 241–277. Academic Press, Inc., San Diego

    Google Scholar 

  • Siegel DP (1986a) Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the Lα〈-〉HII phase transitions. Biophys J 49: 1155–1170

    CAS  PubMed  Google Scholar 

  • Siegel DP (1986b) Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys J 49: 1171–1183

    CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1982) Transmembrane distribution and function of lipids in spinach thylakoid membranes: rationale of the enzymatic modification method. In: Wintermans JFGM and Kuiper PJC (eds) Biochemistry and Metabolism of Plant lipids, pp 351–358. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Siegenthaler PA and Giroud C (1986) Transversal distribution of phospholipids in prothylakoid and thylakoid membranes from oat. FEBS Lett 201: 215–220

    Article  CAS  Google Scholar 

  • Siegenthaler PA and Mayor JP (1992) Changes in the binding and inhibitory properties of urea/triazine-type herbicides upon phospholipid and galactolipid depletion in the outer monolayer of thylakoid membranes. Photosynth Res 31: 57–68

    Article  CAS  Google Scholar 

  • Siegenthaler PA and Rawyler A (1986) Acyl lipids in thylakoid membranes: distribution and involvement in photosynthetic functions. In Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19, Photosynthesis III, pp 693–705. Springer Verlag, Berlin

    Google Scholar 

  • Siegenthaler PA and Trémolières A (1998) Role of acyl lipids in the function of photosynthetic membranes in higher plants. In: Siegenthaler PA and Murata N (eds) lipids in Photosynthesis: Structure, Function and Genetics, pp 145–173. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siegenthaler PA and Vallino J (1995) Effect of a selective depletion of acyl lipids on the light and dark phosphorylation in spinach thylakoid membranes. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol III, pp 225–228. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siegenthaler PA, Rawyler A and Giroud C (1987) Spatial organization and functional roles of acyl lipids in thylakoid membranes. In: Stumpf PK, Mudd JB and Nes WD (eds) The Metabolism, Structure and Function of Plant lipids, pp 161–168. Plenum Press, New York and London

    Google Scholar 

  • Siegenthaler PA, Sutler J and Rawyler A (1988) The transmembrane distribution of galactolipidls in spinach thylakoid inside-out vesicles is opposite to that found in intact thylakoids. FEBS Lett 228: 94–98

    Article  CAS  Google Scholar 

  • Siegenthaler PA, Rawyler A and Smutny J (1989a) The phospholipid population which sustains the uncoupled noncyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim Biophys Acta 975: 104–111

    CAS  Google Scholar 

  • Siegenthaler PA, Rawyler A and Mayor JP (1989b) Structural and functional aspects of acyl lipids in thylakoid membranes from higher plants. In: Biacs PA, Gruiz K, and Kremer T (eds) Biological Role of Plant Lipids, pp. 171–180. Akadémiai Kiado, Budapest and Plenum Publishing Corporation, New York and London

    Google Scholar 

  • Siegenthaler PA, Xu Y, Bovet L, Smutny J and Rawyler A (1992) Molecular organization and functions of acyl lipids in spinach chloroplast membranes. In: Cherif A, Ben Miled-Daoud D, Marzouk B, Smaoui A and Zarrouk M (eds) Metabolism, Structure and Utilization of Plant lipids, pp 285–288. Centre National Pédagogique, Tunisie

    Google Scholar 

  • Siegenthaler PA, Xu Y, Smutny J, Meylan-Bettex M, Vallino J and Rawyler A (1995) Thoughts concerning a new paradigm of the Photosystem II region of the thylakoid membrane based on lipid structure and function. In: Kader JC and Mazliak P (eds) Plant lipid Metabolism, pp 170–172. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sigrist M, Zwillenberg C, Giroud C, Eichenberger W and Boschetti A (1988) Sulfolipid associated with the light-harvesting complex associated with Photosystem II apoproteins of Chlamydomonas reinhardii. Plant Sci 58: 15–23

    Article  CAS  Google Scholar 

  • Simbeni R, Paltauf F and Daum G (1990) Intramitochondrial transfer of phospholipids in the yeast, Saccharomyces cerevisiae. J Biol Chem 265: 281–285

    CAS  PubMed  Google Scholar 

  • Slabas AR and Smith CG (1988) Immunological localization of acyl carrier protein in plants and Escherichia coli: Evidence for membrane association in plants. Planta 175: 145–152

    Article  CAS  Google Scholar 

  • Soll J and Alefsen H (1993) The protein import apparatus of chloroplasts. Physiol Plant 87: 433–440

    CAS  Google Scholar 

  • Stoddart F (1992) Cyclodextrins, off-the-shelf components for the construction of mechanically interlocked molecular systems. Angew Int Ed Engl 31: 846–848

    Google Scholar 

  • Stys D (1995) Stacking and separation of Photosystem I and Photosystem II in plant thylakoid membranes: A physicochemical view. Physiol Plant 95: 651–657

    Article  CAS  Google Scholar 

  • Sundby C and Larsson C (1985) Transbilayer organization of the thylakoid galactolipids. Biochim Biophys Acta 813: 61–67

    CAS  Google Scholar 

  • Szalontai B, Droppa M, Vigh L, Joo F and Horvath G (1986) Selectivity of homogeneous catalytic hydrogenation in saturation of double bonds of lipids in chloroplast lamellae. Photobiochem Photobiophys 10: 233–240

    CAS  Google Scholar 

  • Szejtli J (1988) Cyclodextrin Technology. In: Davies JED (ed) Topics in Inclusion Science, pp 1–306. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Szejtli J (1990) The cyclodextrins and their applications in biotechnology. Carbohydrate Polymers 12:375–392

    Article  CAS  Google Scholar 

  • Tchang F, Connan A, Robert D and Trémolières A (1985) Effect of light and temperature on α-linolenic acid biosynthesis in developing cotyledons of Pharbitis nil. Physiol Vég 24: 361–371

    Google Scholar 

  • Trémolières A (1991) Lipid-protein interactions in relation to light energy distribution in photosynthetic membrane of eukaryotic organisms. Role of trans-Δ3-hexadecenoic acid-containing phosphatidylglycerol. Trends Photochem Photobiol 2: 13–32

    Google Scholar 

  • Trémolières A and Siegenthaler PA (1998) Reconstitution of photosynthetic structures and activities with lipids. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 175–189. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Trémolières A, Dubacq JP, Ambard-Bretteville F and Rémy R (1981) Lipid composition of chlorophyll-protein complexes. FEBS Lett 130: 27–31

    Google Scholar 

  • Trémolières A, Dainese P and Bassi R (1994) Heterogenous lipid distribution among chlorophyll-binding proteins of Photosystem II in maize mesophyll chloroplasts. Eur J Biochem 221: 721–73

    PubMed  Google Scholar 

  • Tuquet C, Guillot-Salomon T, de Lubac M and Signol M (1977) Granum formation and the presence of phosphatidylglycerol containing trans-Δ3-hexadecenoic acid. Plant Sci Lett 8: 59–64

    CAS  Google Scholar 

  • Unitt MD and Harwood JL (1985) Sidedness studies of thylakoid phosphatidylglycerol in higher plants. Biochem J 228: 707–711

    CAS  PubMed  Google Scholar 

  • Van Venetië R and Verkleij AJ (1982) Possible role of nonbilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. Biochim Biophys Acta 692: 397–405

    PubMed  Google Scholar 

  • Vigh L, Joo F, Droppa M, Horvath LI and Horváth G (1985) Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur J Biochem 147: 477–481

    CAS  PubMed  Google Scholar 

  • Voss R, Radunz A and Schmid GH (1992a) Glycolipids are prosthetic groups of polypeptides of the reaction center complex of Photosystem II. In: Argyroudi-Akoyunoglou JH (ed) Regulation of Chloroplast Biogenesis, pp 417–422. Plenum Press, New York

    Google Scholar 

  • Voss R, Radunz A and Schmid GH (1992b) Binding of lipids onto polypeptides of the thylakoid membrane. I. Galactolipids and sulpholipid as prosthetic groups of core peptides of the Photosystem II complex. Z Naturforsch 47c: 406–415

    Google Scholar 

  • Webb MS and Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060: 133–158

    CAS  Google Scholar 

  • Webb MS, Tilcock CPS and Green BR (1988) Salt-mediated interactions between vesicles of the thylakoid lipid digalactosyldiacylglycerol. Biochim Biophys Acta 938: 323–333

    CAS  Google Scholar 

  • Weier TE and Benson AA (1967) The molecular organization of chloroplast membranes. Amer J Bot 54: 389–402

    CAS  Google Scholar 

  • Williams JP, Simpson EE and Chapman DJ (1979) Galactolipid synthesis in Vicia faba leaves. Plant Physiol 63: 669–673

    CAS  Google Scholar 

  • Williams WP (1994) The role of lipids in the structure and function of photosynthetic membranes. Prog Lipid Res 33: 119–127

    CAS  PubMed  Google Scholar 

  • Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler PA and Murata N (eds) lipids in Photosynthesis: Structure, Function and Genetics, pp 103–118 Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Xu YN and Siegenthaler PA (1996a) Phosphatidylglycerol molecular species of photosynthetic membranes analyzed by HPLC: theoretical considerations. Lipids 31: 223–229

    CAS  PubMed  Google Scholar 

  • Xu YN and Siegenthaler PA (1996b) Effect of non-chilling temperature and light intensity during growth of squash cotyledons on the composition of thylakoid membrane lipids and fatty acids. Plant Cell Physiol 37: 471–479

    CAS  Google Scholar 

  • Xu YN, Meylan M and Siegenthaler PA (1994) Effect of phospholipase A2 on the rate and extent of phosphatidylglycerol molecular species hydrolysis in spinach and squash thylakoids. Experientia 50: S23–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Siegenthaler, PA. (1998). Molecular Organization of Acyl Lipids in Photosynthetic Membranes of Higher Plants. In: Paul-André, S., Norio, M. (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-48087-5_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48087-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5173-3

  • Online ISBN: 978-0-306-48087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics