We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Structure, Distribution and Biosynthesis of Glycerolipids from Higher Plant Chloroplasts | SpringerLink
Skip to main content

Structure, Distribution and Biosynthesis of Glycerolipids from Higher Plant Chloroplasts

  • Chapter
Lipids in Photosynthesis: Structure, Function and Genetics

Summary

Galactolipids (MGDG and DGDG), sulfolipid and phosphatidylglycerol are the main constituents of plastid membranes. Glycerolipid biosynthesis requires first the assembly of glycerol and esterification by fatty acids at the sn-1 and sn-2 positions of the glycerol backbone. Then, the sn-3 position of phosphatidic acid or diacylglycerol is modified, for instance by addition of a third fatty acid for triacylglycerol, of a galactose for galactolipids, of a sulfoquinovose for sulfolipid, and phosphorylglycerol for phosphatidylglycerol. Directly or indirectly, the compounds used for the biosynthesis of glycerolipids derive from photosynthesis, i.e. from endogenous CO2 fixation by chloroplasts or from photosynthates produced in leaves. The two main MGDG molecular species found in chloroplasts have (a) 18:3 at both the sn-1 and sn-2 positions of the glycerol backbone, and (b) 18:3 and 16:3 respectively at the sn-1 and sn-2 positions of the glycerol backbone. The occurrence of such structures within plastid membranes reflects the existence of different pathways for the biosynthesis of these two types of molecules. Sulfolipid and phosphatidylglycerol molecular species also contain the typical structure of prokaryotic lipids with C16 fatty acids at the sn-2 position of glycerol. In contrast, a wide variety of diacylglycerol molecular species (i.e. with different acyl chain length and saturation levels at both sn positions) can be found in extremely variable amounts in envelope membranes where the synthesis of all typical plastid lipids takes place. Several enzymes, such as the inner envelope phosphatidate phosphatase and the outer envelope galactolipid:galactolipid galactosyltransferase, are involved in diacylglycerol formation, others, like the MGDG synthase or the sulfolipid synthase, use diacylglycerol within the inner envelope membrane as a substrate for the biosynthesis of membrane glycerolipids. A puzzling question is how such enzymes could be involved in the formation of the characteristic structural features of chloroplast glycerolipids and their final distribution within membranes. Although little molecular data are presently available on enzymes such as the phosphatidate phosphatase, the galactolipid:galactolipid galactosyltransferase or the MGDG synthase, detailed analysis of the biochemical properties of these key enzymes in galactolipid biosynthesis recently provided some clues to the problem. These observations suggest that the biochemical properties of the envelope MGDG synthase are highly responsible for the final MGDG molecular species found in plastid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban C, Joyard J and Douce R (1989) Comparison of glycerolipid biosynthesis in non-green plastids from sycamore (Ace pseudoplatanus) cells and cauliflower (Brassica oleracea) buds. Biochem J 259: 775–783

    CAS  PubMed  Google Scholar 

  • Alban C, Baldet P and Douce R (1994) Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J 300: 557–565

    CAS  PubMed  Google Scholar 

  • Alban C, Jullien J, Job D and Douce R (1995) Isolation and characterization of biotin carboxylase from pea chloroplasts. Plant Physiol 109: 927–935

    CAS  PubMed  Google Scholar 

  • Andrews J and Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts. Pathways and localization. Plant Physiol 79: 259–265

    CAS  Google Scholar 

  • Andrews J, Ohlrogge J and Keegstra K (1985) Final steps of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78: 459–465

    CAS  Google Scholar 

  • Andrews J, Schmidt H and Heinz E (1989) Interference of electron transport inhibitors with desaturation of monogalactosyl diacylglycerol in intact chloroplasts. Arch Biochem Biophys 270: 611–622

    Article  CAS  PubMed  Google Scholar 

  • Aubert S, Gout E, Bligny R. and Douce R. (1994) Multiple effects of glycerol on plant cell metabolism. J. Biol. Chem. 269: 21420–21427

    CAS  PubMed  Google Scholar 

  • Benning C (1998) Membrane lipids in anoxygenic photosynthetic bacteria. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 83–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Benning C and Somerville CR (1982a) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 174: 2352–2360

    Google Scholar 

  • Benning C and Somerville CR (1982b) Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol 174: 6479–6487

    Google Scholar 

  • Benson AA (1963) The plant sulfolipid. Adv Lipid Res 1: 387–394

    CAS  Google Scholar 

  • Bessoule JJ, Testet E and Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur J Biochem 228: 490–497

    Article  CAS  PubMed  Google Scholar 

  • Beyer TA, Sadler JE, Rearick JI, Paulson JC and Hill R (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol 52: 23–175

    CAS  PubMed  Google Scholar 

  • Billecocq A, Douce R and Faure M (1972) Structure des membranes biologiques: Localisation des galactosyl-diglycérides dans les chloroplastes au moyen des anticorps spécifiques. CR Acad Sci Paris 275: 1135–1137

    CAS  Google Scholar 

  • Bishop DG (1986) Chilling sensitivity in higher plants: The role of phosphatidylglycerol. Plant Cell Environment 9: 613–616

    CAS  Google Scholar 

  • Bishop DG, Sparace SA and Mudd JB (1985) Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants: The origin of the diacylglycerol moiety. Arch Biochem Biophys 240: 851–858

    Article  CAS  PubMed  Google Scholar 

  • Bishop WR and Bell RM (1988) Assembly of phospholipids into cellular membranes: Biosynthesis, transmembrane movement and intracellular location. Annu Rev Cell Biol 4: 579–610

    Article  CAS  PubMed  Google Scholar 

  • Bishop WR, Ganong BR and Bell RM (1986) Attenuation of n-1,2-diacylglycerol second messengers by diacylglycerol kinase. Inhibition by diacylglycerol analogs in vitro and in human platelets. J Biol Chem 261: 6993–7000

    CAS  PubMed  Google Scholar 

  • Bligny R, Gardeström P, Roby C and Douce R (1990) 31P NMR studies of spinach leaves and their chloroplasts. J Biol Chem 265: 1319–1326

    CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983a) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. I-Electrophoretic and immunochemical analyses. J Biol Chem 258:13273–13280

    CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II-Biochemical characterization. J Biol Chem 258: 13281–13286

    CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983c) The acyl-CoA synthetase and the acyl-CoA thioesterase are located respectively on the outer and on the inner membrane of the chloroplast envelope. FEBS Lett 153: 377–381

    Article  CAS  Google Scholar 

  • Browse J, Warwick N, Somerville CR and Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J 235: 25–31

    CAS  PubMed  Google Scholar 

  • Browsher CG, Tetlow IJ, Lacey AE, Hanke GT and Emes MJ (1996) Integration of metabolism in non-photosynthetic plastids of higher plants. CR Acad Sci Paris 319: 853–860

    Google Scholar 

  • Carlsson AS, Hellgren LI, Selden G and Sandelius AS (1994) Effects of moderately enhanced levels of ozone on the acyl lipid composition of leaf lipids of garden pea (Pisum sativum). Physiol Plant 91: 754–762

    Article  CAS  Google Scholar 

  • Carman GM and Henry SA (1989) Phospholipid biosynthesis in yeast. Annu Rev Biochem 58: 635–669

    Article  CAS  PubMed  Google Scholar 

  • Chuman L and Brody S (1989) Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro-organisms. Eur J Biochem 184: 643–649

    Article  CAS  PubMed  Google Scholar 

  • Cline K and Keegstra K(1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Physiol 71: 366–372

    CAS  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH and Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea chloroplasts. Proc Natl Acad Sci USA 78: 3595–3599

    CAS  Google Scholar 

  • Covès J, Block MA, Joyard J and Douce R (1986) Solubilization and partial purification of UDP-galactose:diacylglycerol galactosyltransferase activity from spinach chloroplast envelope. FEBS Lett 208: 401–406

    Google Scholar 

  • Covès J, Pineau B, Block MA, Joyard J and Douce R (1987) Solubilization and partial purification of chloroplast envelope proteins: Application to UDP-galactose:diacylglycerol galactosyltransferase. In: Leaver C and Sze H (eds.) Plant Membranes: Structure, Function, Biogenesis, pp. 103–112. Alan R. Liss, New York

    Google Scholar 

  • Covès J, Joyard J and Douce R (1988) Lipid requirement and kinetic studies of solubilized UDP-galactose:diacylglycerol galactosyltransferase activity from spinach chloroplast envelope membranes. Proc Natl Acad Sci USA 85: 4966–4970

    Google Scholar 

  • Davies HM (1993) Medium chain acyl-ACP hydrolysis activity of developing oilseeds. Phytochemistry 33: 1353–1356

    Article  CAS  Google Scholar 

  • Deems RA, Eaton BR and Dennis EA (1975) Kinetic analysis of phospholipase A2 activity towards mixed micelles and its implication for the study of lipolytic enzymes. J Biol Chem 250: 9013–9020

    CAS  PubMed  Google Scholar 

  • Dehaye L, Alban C, Job C, Douce R and Job D (1994) Kinetics of the two forms of acetyl-CoA carboxylase from Pisum sativum. Eur J Biochem 22: 1113–1123

    Google Scholar 

  • Dennis EA (1983) The phospholipases. In: Boyer PD (ed) The Enzymes. Vol 16, pp. 307–353. Academic Press, London

    Google Scholar 

  • Doering TL, Masterson WJ, Englund PT and Hart GW (1989) Biosynthesis of the glycosyl phosphatidylinositol membrane anchor of the trypanosome variant surface glycoprotein: origin of the non-acetylated glucosamine. J Biol Chem 264: 11168–11173

    CAS  PubMed  Google Scholar 

  • Dörmann P and Benning C (1996) Functional expression of uridine 5′-diphospho-glucose-4-epimerase (EC 5.1.3.2) from Arabidopsis thaliana in Saccharomyces cerevisae and Escherichia coli. Arch Biochem Biophys 327: 27–34

    PubMed  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7: 1801–1810

    PubMed  Google Scholar 

  • Dorne A-J and Heinz E (1989) Position and pairing of fatty acids in phosphatidylglycerol from pea leaf chloroplasts and mitochondria. Plant Sci 60: 39–46

    Article  CAS  Google Scholar 

  • Dorne A-J, Block MA, Joyard J and Douce R (1982) The galactolipid:galactolipid galactosyltransferase is located on the outer membrane of the chloroplast envelope. FEBS Lett 145: 30–34

    Article  CAS  Google Scholar 

  • Dorne A-J, Joyard J, Block MA and Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100: 1690–1697

    Article  CAS  PubMed  Google Scholar 

  • Dorne A-J, Joyard J and Douce, R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87: 71–74

    CAS  PubMed  Google Scholar 

  • Douce R (1974) Site of synthesis of galactolipids in spinach chloroplasts. Science 183: 852–853

    CAS  Google Scholar 

  • Douce R and Joyard J (1980) Plant galactolipids. In: Stumpf PK (ed.) The Biochemistry of Plants, Lipids: Structure and Function, Vol 4, pp 321–362. Academic Press, New York

    Google Scholar 

  • Douce R and Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6: 173–216

    Article  CAS  PubMed  Google Scholar 

  • Douce R and Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 69–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Douce R, Holtz RB and Benson AA (1973) Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem 248: 7215–7222

    CAS  PubMed  Google Scholar 

  • Faccioti D, Knauf VC and Stumpf PK (1998) Triglycerides as products of photosynthesis. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 225–248. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Flügge UI and Benz R (1984) Pore-forming activity in the outer membrane of the chloroplast envelope. FEBS Lett 169: 85–89

    Google Scholar 

  • Flügge UI and Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Google Scholar 

  • Fox BG, Shanklin J, Somerville C and Munck E (1993) Stearoylacyl carrier Δ9 desaturase from Ricinus communis is a diironoxo protein. Proc Natl Acad Sci USA 90: 2486–2490

    CAS  PubMed  Google Scholar 

  • Frentzen M (1986) Biosynthesis and desaturation of the different diacylglycerol moieties in higher plants. J Plant Physiol 124: 193–209

    CAS  Google Scholar 

  • Frentzen M (1993) Acyltransferases andtriacylglycerol. In: Moore ST Jr (ed) Lipid Metabolism in Plants, pp 195–230. CRC Press, Boca Raton

    Google Scholar 

  • Frentzen M, Heinz E, McKeon TA and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129: 629–636

    CAS  PubMed  Google Scholar 

  • Gardiner SE and Roughan PG (1983) Relationship between fatty-acyl composition of diacylgalactosylglycerol and turnover of chloroplast phosphatidate. Biochem J 210: 949–952

    CAS  PubMed  Google Scholar 

  • Gardiner SE, Roughan PG and Browse J (1984) Glycerolipid labeling kinetics in isolated intact chloroplasts. Biochem J 224: 637–643

    CAS  PubMed  Google Scholar 

  • Garnier J, Wu B, Maroc J, Guyon D and Trémolières A (1990) Restoration of both an oligomeric form of the light-harvesting antenna CPU and a fluorescence state II-state I transition by Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol, in cells of a mutant of Chlamydomonas reinhardtii. Biochim Biophys Acta 1020: 153–162

    CAS  Google Scholar 

  • Gee RW, Byerrum RU, Gerber DW and Tolbert NE (1988a) Dihydroxyacetone phosphate reductase in plants. Plant Physiol 86: 98–103

    CAS  Google Scholar 

  • Gee RW, Goyal A, Gerber DW, Byerrum RU and Tolbert NE (1988b) Isolation of dihydroxyacetone phosphate reductase from Dunaliella chloroplasts and comparison with isozymes from spinach leaves. Plant Physiol 88: 896–903

    CAS  Google Scholar 

  • Gee RW, Goyal A, Gerber DW, Byerrum RU and Tolbert NE (1993) Two isoforms of dihydroxyacetone phosphate reductase from the chloroplasts of Dunaliella tertiolecta. Plant Physiol 103: 243–249

    CAS  PubMed  Google Scholar 

  • Gombos Z and Murata (1998) Genetically engineered modulation of the unsaturation of glycerolipids and its consequences in tolerance of photosynthesis to temperature stresses. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 249–262. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gounaris K and Barber J (1983) Monogalactosyldiacylglycerol: The most abundant polar lipid in Nature. Trends Biochem Sci 9: 378–381

    Google Scholar 

  • Guler S, Seeliger A, Hartel H, Renger G and Benning C (1996) A null mutant of Synechococcus sp. PCC 7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    CAS  PubMed  Google Scholar 

  • Gunstone F.D. (1994) High resolution 13C NMR. A technique for the study of lipid structure and composition. Prog Lipid Res 33: 19–28

    CAS  PubMed  Google Scholar 

  • Haas R, Siebertz HP, Wrage K and Heinz E (1980) Localization of sulfolipid labeling within cells and chloroplasts. Planta 148: 238–244

    Article  CAS  Google Scholar 

  • Hannun YA, Loomis CR and Bell RM (1991) Activation of protein kinase C by triton-X100 mixed micelles containing diacylglycerol and phosphatidylserine. J Biol Chem 260: 10039–10043

    Google Scholar 

  • Harwood JL (1980a) Plant acyl lipids: Structure, distribution, and analysis. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 4, Lipids: Structure and Function, pp 2–55. Academic Press, New York

    Google Scholar 

  • Harwood JL (1980b) Sulfolipids. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 4, Lipids: Structure and Function, pp 301–320. Academic Press, New York

    Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301: 7–56

    PubMed  Google Scholar 

  • Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 287–302. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Haverkate F and Van Deenen LLM (1965) Isolation and chemical characterization of phosphatidylglycerol from spinach leaves. Biochim Biophys Acta 106: 78–92

    CAS  PubMed  Google Scholar 

  • Heber U (1974) Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol 25: 393–321

    Article  CAS  Google Scholar 

  • Heemskerk JWM and Wintermans JFGM (1987) The role of the chloroplast in the leaf acyl-lipid synthesis. Physiol Plant 70: 558–568

    CAS  Google Scholar 

  • Heemskerk JWM, Wintermans JFGM, Joyard J, Block MA, Dorne A-J and Douce R (1986) Localization of galactolipid:galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim Biophys Acta 877: 281–289

    CAS  Google Scholar 

  • Heemskerk JHW, Jacobs FHH, Scheijen MAM, Heslper JPFG and Wintermans JFGM (1987) Characterization of galactosyltransferases in spinach chloroplast envelope. Biochim Biophys Acta 918: 189–203

    CAS  Google Scholar 

  • Heemskerk JHW, Storz T, Schmidt RR and Heinz E (1990) Biosynthesis of digalactolsyldiacylglycerol in plastids from 16:3 and 18:3 plants. Plant Physiol 93: 1286–1294

    CAS  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini M and Licthenthaler HK (eds) Lipids and Lipid Polymers, pp 102–120. Springer Verlag, Berlin

    Google Scholar 

  • Heinz E (1993) Biosynthesis of polyunsaturated fatty acids. In: Moore ST Jr (ed) Lipid Metabolism in Plants, pp 34–89. CRC Press, Boca Raton

    Google Scholar 

  • Heinz E and Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273–279

    CAS  Google Scholar 

  • Heinz E, Schmidt H, Hoch M, Jung K-H, Binder H and Schmidt RR (1989) Synthesis of different nucleoside 5′-diphosphosulfoquinovoses and their use for studies on sulfolipid biosynthesis in chloroplasts. Eur J Biochem 184: 445–453

    Article  CAS  PubMed  Google Scholar 

  • Hellgren LI, Carlsson AS, Sellden G and Sandelius AS (1995) In situ leaf lipid metabolism in garden pea (Pisum sativum L.) exposed to moderately enhanced levels of ozone. J Exp Bot 4: 221–230

    Google Scholar 

  • Hills MJ, Dann R, Lydiate D and Sharpe A (1994) Molecular cloning of a cDNA from Brassica napus L. for a homologue of acyl-CoA-binding protein. Plant Mol Biol 25: 917–920

    Article  CAS  PubMed  Google Scholar 

  • Hippman H and Heinz E (1976) Glycerol kinase in leaves. Z Pflanzenphysiol 79: 408–418

    Google Scholar 

  • Hobe S, Prytulla S, Külbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted lightharvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    CAS  PubMed  Google Scholar 

  • Hoppe W and Schwenn JD (1981) In vitro biosynthesis of the plant sulfolipid: on the origin of the sulfonate group. Z Naturforsch 36: 820–826

    Google Scholar 

  • Hugly S and Somerville C (1992) A role for membrane lipid polyunsaturationin chloroplast biogenesis at low temperature. Plant Physiol 99: 197–202

    CAS  Google Scholar 

  • Jäger-Vottero P, Dorne AJ, Jordanov J, Douce R and Joyard J (1997) Redox chains in chloroplast envelope membranes: Spectroscopic evidences for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci USA 94: 1597–1602

    PubMed  Google Scholar 

  • Jaworski JG, Clough RC and Barnum SR (1989) A cerulenin insensitive short chain 3-ketoacyl-acyl carier protein synthase in Spinacia oleracea leaves. Plant Physiol 90: 41–44

    CAS  Google Scholar 

  • Jaworski JG, Tai H, Ohlrogge JB and Post-Beittenmiller D (1994) The initial reactions of fatty acid biosynthesis in plants. Prog Lipid Res 33: 47–54

    CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1976a) L’enveloppe des chloroplastes estelle capable de synthétiser la phosphatidylcholine? CR Acad Sci Paris 282: 1515–1518

    CAS  Google Scholar 

  • Joyard J and Douce R (1976b) Mise en évidence et rôle des diacylglycérols dans l’enveloppe des chloroplastes d’eépinard. Biochim Biophys Acta 424: 126–131

    Google Scholar 

  • Joyard J and Douce R (1977) Site of synthesis of phosphatidic acid and diacylglycerol in spinach chloroplasts. Biochim Biophys Acta 486: 273–285

    CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1979) Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes. FEBS Lett 102: 147–150

    Article  CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1987) Galactolipid biosynthesis. In: Stumpf PK (ed.) The Biochemistry of Plants, Vol 9, Lipids: Structure and Function, pp 215–274. Academic Press, New York

    Google Scholar 

  • Joyard J and Stumpf PK (1981) Synthesis of long-chain acyl-CoA in chloroplast envelope membranes. Plant Physiol 67: 250–256

    CAS  Google Scholar 

  • Joyard J, Douce R, Siebertz HP and Heinz E (1980) Distribution of radioactive lipids between envelopes and thylakoids from in vivo labelled chloroplasts. Eur J Biochem 108: 171–176

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Blée E and Douce R (1986) Sulfolipid synthesis from 35SO 2-4 and [1-14C]-acetate in isolated intact spinach chloroplasts. Biochim Biophys Acta 879: 78–87

    CAS  Google Scholar 

  • Joyard J, Block MA, Malherbe A, Maréchal E and Douce R (1993) Origin and synthesis of galactolipid and sulfolipid head groups. In: Moore ST Jr (ed) Lipid Metabolism in Plants, pp 231–258. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Joyard J, Maréchal E, Malherbe A, Block MA, and Douce R (1994) Importance of diacyiglycerol in glycerolipid biosynthesis by spinach chloroplast envelope membranes. Prog Lipid Res 33: 105–118

    CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid transfer proteins. Annu Rev Plant Physiol Plant Mol Biol 47: 627–654

    Article  CAS  PubMed  Google Scholar 

  • Kanoh H and Ohno K (1981) Partial purification and properties of diacylglycerol kinase from rat liver cytosol. Arch Biochem Biophys 209: 266–275

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen S (1992) Structure and expression of the KAS12 gene encoding a β-ketoacyl-acyl carrier protein synthase I isozyme from Barley. J Biol Chem 267: 23999–24006

    CAS  PubMed  Google Scholar 

  • Kinney AJ (1993) Phospholipid head groups. In: Moore ST Jr (ed) Lipid Metabolism in Plants, pp 259–284. CRC Press, Boca Raton

    Google Scholar 

  • Kleppinger-Sparace KF, Mudd JB and Sparace SA (1990) Biosynthesis of plant sulfolipids. In: Rennenberg H, Brunold Ch, Dekok LJ and Stulen I (eds) Sulfur Nutrition and Sulrur Assimilation in Higher Plants, pp 77–88. SPB Academic Publishing, The Hague

    Google Scholar 

  • Knowles JR (1989) The mechanism of biotin-dependent enzymes. Annu Rev Biochem 58: 195–221

    Article  CAS  PubMed  Google Scholar 

  • Königs B and Heinz E (1974) Investigation of some enzymatic activities contributing to the biosynthesis of galactolipid precursors in Vicia faba. Planta 118: 159–169

    Google Scholar 

  • Konishi T and Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci US A 91: 3598–3601

    CAS  Google Scholar 

  • Lawlor DW (1987) Photosynthesis: Metabolism, Control and Physiology. Longman Scientific and Technical, Harlow, UK

    Google Scholar 

  • Lightner J, James DW Jr, Dooner HK and Browse J (1994) Altered body morphology is caused by increased stearate levels in a mutant of Arabidopsis. Plant J 6: 401–412

    Article  CAS  Google Scholar 

  • Malherbe A, Block MA, Joyard J and Douce R (1992) Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol. J Biol Chem 267: 23546–23553

    CAS  PubMed  Google Scholar 

  • Malherbe A, Block MA, Douce R and Joyard J (1995) Solubilization and biochemical properties of phosphatidate phosphatase from spinach chloroplast envelope membranes. Plant Physiol Biochem 33: 149–161

    CAS  Google Scholar 

  • Mantel CR, Schulz AR, Miyazawa K and Broxmeyer HE (1993) Kinetic selectivity of cholinephosphotransferase in mouse liver: the Km for CDP-choline depends on diacylglycerol structure. Biochem J 289: 815–820

    CAS  PubMed  Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1991) Purification de l’UDP-galactose:1,2-diacylglycérol galactosyltransferase de l’enveloppe des chloroplastes d’épinard. CR Acad Sci Paris 313: 521–528

    Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1994a) Kinetic properties of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. J Biol Chem 269: 5788–5798

    PubMed  Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1994b) Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Lett 352:307–310

    PubMed  Google Scholar 

  • Maréchal E, Mège C, Block MA, Douce R and Joyard J (1995) The catalytic site of monogalactosyldiacylglycerol synthase from spinach chloroplast envelope membranes. Biochemical analysis of the structure and of the metal content. J Biol Chem 270: 5714–5722

    PubMed  Google Scholar 

  • Martin BA and Wilson RF (1984) Subcellular localization of triacylglycerol biosynthesis in spinach leaves. Lipids 19:117–121

    CAS  Google Scholar 

  • Miller JC and Weinhold PA (1981) Cholinephosphotransferase in rat lung. J Biol Chem 256: 12662–12665

    CAS  PubMed  Google Scholar 

  • Miquel M, Block MA, Joyard J, Dorne A-J, Dubacq J-P, Kader JC and Douce R (1987) Protein-mediated transfer of phosphatidylcholine from liposomes to spinach chloroplast envelope membranes. Biochim Biophys Acta 937: 219–228

    Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    CAS  PubMed  Google Scholar 

  • Mudd JB (1980) Phospholipid biosynthesis. In: PK Stumpf (ed.) The Biochemistry of Plants, Vol 4, Lipids: Structure and Function, pp 250–282. Academic Press, New York

    Google Scholar 

  • Mudd JB and Kleppinger-Sparace KF (1987) Sulfolipids. In: Stumpf PK (ed) The Biochemistry of Plants, Vol. 9, Lipids: Structure and Function, pp 275–289. Academic Press, New York

    Google Scholar 

  • Mudd JB, Van Vliet HHDM and Van Deenen LLM (1969) Biosynthesis of galactolipids by enzyme preparations from spinach leaves. J Lipid Res 10: 623–630

    CAS  PubMed  Google Scholar 

  • Murata N and Hoshi H (1984) Suloquinovosyl diacylglycerols in chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 25: 1241–1245

    CAS  Google Scholar 

  • Murata N and Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, Lipids: Structure and Function, pp 315–347. Academic Press, New York

    Google Scholar 

  • Murata N, Sato N, Takahashi N and Hamazaki Y (1982) Compositions and positional distribution of fatty acids in phospholipids from leaves of chilling-sensitive and chillingresistant plants. Plant Cell Physiol 23: 1071–1079

    CAS  Google Scholar 

  • Murphy DJ (1994) Biogenesis, function and biotechnology of plant storage lipids. Prog Lipid Res 33: 71–85

    CAS  PubMed  Google Scholar 

  • Norman HA, Pillai P and St John JB (1991) In vitro desaturation of monogalactosyldiacylglycerol and phosphatidylcholine molecular species by chloroplast homogenates. Phytochemistry 30: 2217–2222

    Article  CAS  Google Scholar 

  • Nussberger S, Dörr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    CAS  PubMed  Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Shimojima M, Arai T, Masuda T, Shioi Y and Takamiya KI (1995) UDP-galactose:diacylglyceroI galactosyltransferase in cucumber seedlings: Purification of the enzyme and its activation by phosphatidic acid. In: Kader JC and Mazliak P (eds) Plant Lipid Metabolism, pp 152–155. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pollard MR (1987) Analysis and structure determination of acyl lipids. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, Lipids: Structure and Function, pp 1–30. Academic Press, New York

    Google Scholar 

  • Rafferty JB, Simon JW, Stuije AR, Slabas AR, Fawcett T and Rice DW (1994) Crystallization of the NADH-specific enoyl acyl carrier protein reductase from Brassica napus. J Mol Biol 237: 240–242

    Article  CAS  PubMed  Google Scholar 

  • Rock CO and Cronon JE (1996) Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta 1302: 1–16

    PubMed  Google Scholar 

  • Rossak M, Tietje C, Heinz E and Benning C (1995) Accumulation of UDP-sulfoquinovose in a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Biol Chem 270: 25792–25797

    CAS  PubMed  Google Scholar 

  • Roughan PC and Slack CR (1977) Long-chain acyl-coenzyme A synthetase activity of spinach chloroplasts is concentrated in the envelope. Biochem J 162: 457–459

    CAS  PubMed  Google Scholar 

  • Roughan PC and Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33: 97–132

    Article  CAS  Google Scholar 

  • Roughan PG, Mudd JB, McManus TT and Slack CR (1979) Linoleate and ga-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts. Biochem J 184: 571–574

    CAS  PubMed  Google Scholar 

  • Sakaki T, Saito K, Kawaguchi A, Kondo N and Yamada M (1990a) Conversion of monogalactosyldiacylglycerols to triacylglycerol in ozone-fumigated spinach leaves. Plant Physiol 94: 766–772

    CAS  Google Scholar 

  • Sakaki T, Kondo N and Yamada M (1990b) Pathway for the synthesis of triacylglycerol from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94: 773–780

    CAS  Google Scholar 

  • Sakaki T, Tanaka K and Yamada M (1994) General metabolic changes in leaf lipids in response to ozone. Plant Cell Physiol 35: 53–62

    CAS  Google Scholar 

  • Sakane F, Yamada K, Kanoh H, Yokoyama C and Tanabe T (1990) Porcine diacylglycerol kinase sequence has a zinc finger and a E-F hand motifs. Nature 344: 345–348

    Article  CAS  PubMed  Google Scholar 

  • Sanchez J (1994) Lipid photosynthesis in olive fruit. Prog Lipid Res 33: 97–104

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusawa I and Matsuno R (1993) Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 268:25118–25123

    CAS  PubMed  Google Scholar 

  • Schaap D, De Widt J, Van der Wal J, Vanderkerkhove J, Van Damme J, Gussow D, Ploegh HL, Van Blitterswijk J and Van der Bend RL (1990) Purification, cDNA-cloning and expression of human diacylglycerol kinase. FEBS Lett 275: 151–158

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H and Heinz E (1990a) Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol 94: 214–220

    CAS  Google Scholar 

  • Schmidt H and Heinz E (1990b) Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc Natl Acad Sci USA 87: 9477–9480

    CAS  PubMed  Google Scholar 

  • Schmidt H, Dresselhaus T, Buck F and Heinz E (1994) Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol Biol 26: 631–642

    CAS  PubMed  Google Scholar 

  • Schneider G, Lindqvist Y, Shanklin J and Somerville CR (1992) Preliminary crystallographic data for stearoyl-acyl carrier protein desaturase from castor seed. J Mol Biol 225: 561–564

    Article  CAS  PubMed  Google Scholar 

  • Segel IH (1975) Enzyme Kinetics, John Wiley and Sons, New York

    Google Scholar 

  • Seifert U and Heinz E (1992) Enzymatic characteristics of DP-sulfoquinovose: diacylglycerol sulfoquinovosyltransferase from chloroplast envelopes. Hot Acta 105:197–205

    CAS  Google Scholar 

  • Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 209–204. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Serre L, Verbree EC, Dauter Z, Stuije AR and Derewenda ZS (1995) The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5 Å resolution. Crystal structure of a fatty acid synthase component. J Biol Chem 270: 12961–12964

    CAS  PubMed  Google Scholar 

  • Shanklin J and Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514

    CAS  PubMed  Google Scholar 

  • Shimakaya T and Stumpf PK (1982a) Isolation and function of spinach leaf β-ketoacyl-[acyl carrier protein] synthases. Proc Natl Acad Sci USA 79: 5808–5812

    Google Scholar 

  • Shimakaya T and Stumpf PK (1982b) The purification and function of acetyl coenzymeA:acyl carrier protein transacylase. J Biol Chem 258: 3592–3598

    Google Scholar 

  • Shimakaya T and Stumpf PK (1982c) Purification and characteristics of β-ketoacyl-[acyl carrier protein] reductase, β-hydroxyacyl-[acyl carrier protein] dehydrase and enoyl-[acyl carrier protein] reductase from Spinacia oleracea leaves. Arch Biochem Biophys 218: 77–91

    Google Scholar 

  • Shimakaya T and Stumpf PK (1983) Purification and characteristics of β-ketoacyl-[acyl carrier protein] synthase I from Spinacia oleracea leaves. Arch Biochem Biophys 220: 39–45

    Google Scholar 

  • Shintani DK and Ohlrogge JB (1994) The characterization of a mitochondrial acyl carrier isform isolated from Arabidopsis thaliana. Plant Physiol 104: 1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Shorrosh BS, Roesler KR, Shintani D, van de Loo FJ and Ohlrogge JB (1995) Structural analysis, plastid localisation, and expression of the biotine carboxylase subunit of acetyl-CoA carboxylase from tobacco. Plant Physiol 108: 805–812

    Article  CAS  PubMed  Google Scholar 

  • Siebertz HP, Heinz E, Linscheid M Joyard J and Douce R (1979) Characterization of lipids from chloroplast envelopes. Eur J Biochem 101:429–438

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler PA (1998) Molecular organization of acyl lipids in photosynthetic membranes of higher plants. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 119–144. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siegenthaler PA and Trémolières A (1998) Role of acyl lipids in the function of photosynthetic membranes in higher plants. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 145–173. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Siggaard-Andersen M, Kauppinen S and von Wettstein-Knowles P (1991) Primary structure of a cerulenin-binding β-ketoacyl-[acyl carrier protein] synthase from barley chloroplasts. Proc Natl Acad Sci USA 88: 4114–4118

    CAS  PubMed  Google Scholar 

  • Slabas AR and Fawcett T (1992) The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol 19: 169–191

    Article  CAS  PubMed  Google Scholar 

  • Slabas AR, Chase D, Nishida I, Murata N, Sidebottom C, Safford R, Sheldon PS, Kekwick RG, Hardie DG and Mackintosh RW (1992) Molecular cloning of higher-plant-3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodGgene of the nitrogen-fixing soil bacterium Rhizobium meliloti. Biochem J 283: 321–326

    CAS  PubMed  Google Scholar 

  • Slabas AR, Brown A, Sinden BS, Swinhoe R, Simon JW, Ashton AR, Whitfeld PR and Elborough KM (1994) Pivotal reactions in fatty acid synthesis. Prog Lipid Res 33: 39–46

    CAS  PubMed  Google Scholar 

  • Somerville C and Browse J (1991) Plant lipids: Metabolism, mutants, and membranes. Science 252: 80–87

    CAS  Google Scholar 

  • Somerville C and Browse J (1996) Dissecting desaturation: Plants prove advantageous. Trends Cell Biol 6: 148–153

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Kürzel B and Heldt H W (1984) Control of photosynthetic sucrose synthesis by fructose 2,6-bisphosphate. Plant Physiol 75: 544–560

    Google Scholar 

  • Stymne S and Stobart AK (1987) Triacylglycerol biosynthesis. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, Lipids: Structure and Function, pp 175–214. Academic Press, New York

    Google Scholar 

  • Teucher T and Heinz E (1991) Purification of UDP-galactose:diacylglycerol from chloroplast envelopes of spinach (Spinacia oleracea L.). Planta 184: 319–326

    Article  CAS  Google Scholar 

  • Thoden JB, Frey PA and Holden HM (1996) Crystal structures of the oxidized and reduced forms of UDP-galactose-4-epimerase isolated from Escherichia coli. Biochemistry 35: 2557–2567

    CAS  PubMed  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302: 17–45

    PubMed  Google Scholar 

  • Trémolières A, Roche O, Dubertret G, Maroc J, Guyon D and Garnier J (1991) Restoration of thylakoid appression by Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol, in a mutant of Chlamydomonas reinhardtii. Relationship with the regulation of excitation energy distribution. Biochim Biophys Acta 1059: 286–292

    Google Scholar 

  • Van Besouw A and Wintermans JFGM (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44–53

    PubMed  Google Scholar 

  • Van Besouw A and Wintermans JFGM (1979) The synthesis of galactolipids by chloroplast envelopes. FEBS Lett 102:33–37

    Article  PubMed  Google Scholar 

  • Verwoert II, Brown A, Slabas AR and Stuije AR (1995) A Zea mays GTP-binding protein of the ARF family complements an Escherichia coli mutant with a temperature-sensitive malonyl-CoA:acyl carrier protein transacylase. Plant Mol Biol 27: 629–633

    CAS  PubMed  Google Scholar 

  • Vijayan P, Routaboul JM and Browse J (1998) A genetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 263–285. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wada H and Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 65–81. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28: 4523–4530

    Article  CAS  PubMed  Google Scholar 

  • Williams WP (1994) The role of lipids in the structure and function of photosynthetic membranes. Prog Lipid Res 33: 119–127

    CAS  PubMed  Google Scholar 

  • Williams JP and Khan MU (1996) Lipid metabolism in leaves of an 18:4-plant, Echium plantagineum: A model of galactolipid biosynthesis in 18:3-and 18:4-plants. Plant Physiol Biochem 34:93–100

    CAS  Google Scholar 

  • Wissing JB and Wagner KG (1992) Diacylglycerol kinase from suspension eultured plant cells. Characterization and subcellular localization. Plant Physiol 98:1148–1153

    CAS  Google Scholar 

  • Yadav SP and Brew K (1990) Identification of a region of UDP-galactose:N-acetylglucosamine β-4-galactosyltransferase involved in UDP-galactose binding by differential labeling. J Biol Chem 265:14163–14169

    CAS  PubMed  Google Scholar 

  • Yadav SP and Brew K (1991) Structure and function in galactosyltransferase. Sequence locations of a-lactalbumin bindingsite, thiol group, and disulfide bond. J Biol Chem 266:698–703

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Joyard, J., Maréchal, E., Miège, C., Block, M.A., Dorne, AJ., Douce, R. (1998). Structure, Distribution and Biosynthesis of Glycerolipids from Higher Plant Chloroplasts. In: Paul-André, S., Norio, M. (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-48087-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48087-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5173-3

  • Online ISBN: 978-0-306-48087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics