Skip to main content

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 7))

Conclusion

Lanthanides, as alternative probes to conventional fluorophores, can lead to enhanced sensitivity in applications where autofluorescence is a problem. Multiple labeling with lanthanide chelates have been shown to be an effective method for further increases in sensitivity. These probes, being nonisotopic, avoid the many practical problems associated with radioactive probes. Lanthanide probes are particularly advantageous in resonance energy transfer, whether for measuring distances in biocomplexes or when used to generate new lifetime tailored dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunzli, J.-C. G. Luminescent probes. In Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice, J.-C. G. Bunzli and G. R. Choppin, eds. New York: Elsevier, 1989, pp. 219–293.

    Google Scholar 

  2. Diamandis, E. P. Time-resolved fluorometry in nucleic acid hybridization and Western blotting techniques. Electrophoresis 14, 866–875, 1993.

    Article  CAS  Google Scholar 

  3. Diamandis, E. P., and Christopoulos, T. K. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays. Anal. Chem. 62, 1149A–1157A, 1990.

    CAS  Google Scholar 

  4. Dickson, E. F. G., Pollak, A., and Diamandis, E. P. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J. Photochem. Photobiol B: Biology 27, 3–19, 1995.

    CAS  Google Scholar 

  5. Dickson, E. F. G., Pollak, A., and Diamandis, E. P. Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmac. Ther. 66, 207–235, 1995.

    CAS  Google Scholar 

  6. Lövgren, T, and Iitia, A. Detection of lanthanide chelates by time-resolved fluorescence. In Nonisotopic Probing, Blotting, and Sequencing, L. J. Kricka, ed. San Diego, CA: Academic Press, 1995, pp. 331–376.

    Google Scholar 

  7. Sammes, P. G., and Yahioglu, G. Modern bioassays using metal chelates as luminescent probes. Natural Products Reports 13, 1–28, 1996.

    Article  CAS  Google Scholar 

  8. Selvin, P. R. Principles and biophysical applications of luminescent lanthanide probes. Annu. Rev. Biophys. Biomolec. Struct. 31, 275–302, 2002.

    CAS  Google Scholar 

  9. Selvin, P. R. Luminescent lanthanide chelates for improved resonance energy transfer and applications to biology. In Applied Fluorescence in Chemistry, Biology and Medicine, W. Rettig, B. Strehmenl, S. Schrader, and H. Seifert, eds. New York: Springer Verlag, 1999, pp. 457–487.

    Google Scholar 

  10. Soini, E., and Lövgren, T. Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Crit. Rev. Anal. Chem. 18, 104–154, 1987.

    Google Scholar 

  11. Weissman, S. I. Intramolecular energy transfer: The fluorescence of complexes of europium. J. Chem. Phys. 10, 214, 1942.

    Article  CAS  Google Scholar 

  12. Kwiatkowski, M., Samiotaki, M., Lamminmaki, U., Mukkala, V.-M., and Landegren, U. Solid-phase synthesis of chelate-labelled oligonucleotides: application in triple-color ligase-mediated gene analysis. Nucleic Acids Res. 22, 2604–2611, 1994

    CAS  Google Scholar 

  13. Samiotaki, M., Kwiatkowski, M., Ylitalo, N., and Landegren, U. Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal. Biochem. 253, 156–161, 1997.

    Article  CAS  Google Scholar 

  14. Lehn, J. M. Comprehensive Supramolecular Chemistry. New York: Pergamon/Elsevier, 1996.

    Google Scholar 

  15. Alpha, B., Ballardini, R., Balzani, V., Lehn, J.-M., Perathoner, S., and Sabbatini, N. Antenna effect in luminescent lanthanide cryptates: A photophysical study. Photochem. Photobiol 52, 299–306, 1990.

    CAS  Google Scholar 

  16. Mathis, G. Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959, 1993.

    CAS  Google Scholar 

  17. Mathis, G. Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin. Chem. 41, 1391–1397, 1995.

    CAS  Google Scholar 

  18. Mathis, G., Socquet, F., Viguier, M., and Darbouret, B. Homogeneous immunoassays using rare earth cryptates and time resolved fluorescence: Principles and specific advantages for tumor markers. Anticancer Res. 17, 3011–3014, 1997.

    CAS  Google Scholar 

  19. Prat, O., Lopez, E., and Mathis, G. Europium(III) cryptate: A fluorescent label for the detection of DNA hybrids on solid support. Anal. Biochem. 195, 283–289, 1991.

    Article  CAS  Google Scholar 

  20. Saha, A. K., Kross, K., Kloszewski, E. D., Upson, D. A., Toner, J. L., Snow, R. A., Black, C. D. V., and Desai, V. C. Time-resolved fluorescence of a new europium chelate complex: Demonstration of highly sensitive detection of protein and DNA samples. J. Am. Chem. Soc. 115: 11032–11033, 1993.

    Article  CAS  Google Scholar 

  21. Bailey, M. P., Rocks, B. F., and Riley, C. (1984) Terbium chelate for use as a label in fluorescent immunoassays. Analyst 109, 1449–1450, 1984.

    Article  CAS  Google Scholar 

  22. Canfi, A., Bailey, M. P., and Rocks, B. F. Fluorescent terbium chelatesderived from diethylenetriaminepentaacetic acid and heterocyclic compounds. Analyst 114, 1405–1406, 1989.

    CAS  Google Scholar 

  23. Li, M., and Selvin, P. R. Luminescent lanthanide polyaminocarboxylate chelates: The effect of chelatestructure. J. Am. Chem. Soc. 117, 8132–8138, 1995.

    CAS  Google Scholar 

  24. Chen, J., and Selvin, P. R. Synthesis of 7-amino-4-trifluoromethyl-2-(lH)-quinolinone and its use as an antenna molecule for luminescent europium polyaminocarboxylate chelates. In press.

    Google Scholar 

  25. Savitsky, A. P., Chydinov, A. V, and Krilova, S. M. Novel fluorescent chelate for Eu. Presented at Advances in Fluorescence Sensing Technology II, San Jose, CA, 1995.

    Google Scholar 

  26. Hemmilä, I., Mukkala, V.-M., and Takalo, H. J. Development of luminescent lanthanide chelate labels for diagnostic assays. J. Alloys Compounds 249: 158–162, 1997.

    Google Scholar 

  27. Xiao, M., and Selvin, P. R. Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer. J. Am. Chem. Soc. 123, 7067–7073, 2001.

    Article  CAS  Google Scholar 

  28. Yamada, S., Miyoshi, F., Kano, K., and Ogawa, T. Highly sensitive laser fluorimetry of europium(III) with l,1,1-trifluoro-4-(2-thienyl)-2,4-butanedione. Anal. Chim. Acta 127, 195–198, 1981.

    Article  CAS  Google Scholar 

  29. Siitari, H., Hemmila, I., Soini, E., Lövgren, T., and Koistinen, V. Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301, 258–260, 1983.

    Article  CAS  Google Scholar 

  30. Xu, Y. Y, Pettersson, K., Blomberg, K., Hemmila, I., Mikola, H., and Lövgren, T. Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17 alpha-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin. Chem. 38, 2038–2043, 1992.

    CAS  Google Scholar 

  31. Landegren, U., Kaiser, R., Caskey, C. T., and Hood, L. DNA diagnostics—Molecular techniques and automation. Science 242, 229–237, 1988.

    CAS  Google Scholar 

  32. Dahlén, P., Liukkonen, L., Kwiatkowski, M., Hurskainen, P., Iitiä, A., Siitari, H., Ylikoski, J., Mukkala, V. M., and Lövgren, T. Europium-labeled oligonucleotide hybridization probes-Preparation and properties. Bioconj. Chem. 5, 268–272, 1994.

    Google Scholar 

  33. Alpha-Bazin, B., Bazin, H., Preaudat, M., Trinquet, E., and Mathis, G. Rare earth cryptates and TRACE technology as tools for probing molecular interactions in biology. New Trends Fluoresc. Spectrosc.: Appl. Chem. Life Sci. 1, 439–455, 2001.

    CAS  Google Scholar 

  34. Takalo, H., Mukkala, V.-M., Mikola, H., Liitti, P., and Hemmila, I. Synthesis of europium(III) chelates suitable for labeling of bioactive molecules. Bioconj. Chem. 5, 278–282, 1994.

    CAS  Google Scholar 

  35. Sieving, P. F., Watson, A. D., and Rocklage, S. M. Preparation and characterization of paramagnetic polychelates and their protein conjugates. Bioconj. Chem. 1, 65–71, 1990.

    CAS  Google Scholar 

  36. Canfi, A., Bailey, M. P., and Rocks, B. F. Multiple labelling of immunoglobulin G, albumin and testosterone with a fluorescent terbium chelate for fluorescence immunoassays. Analyst 114, 1908–1911, 1989.

    Google Scholar 

  37. Moronne, M. M. Development of X-ray excitable luminescent probes for scanning X-ray microscopy. Ultramicmscopy 77, 23–36, 1999.

    CAS  Google Scholar 

  38. Lamture, J. B., and Wensel, T. G. Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb (III) chelates. Bioconj. Chem. 6: 88–92, 1995.

    CAS  Google Scholar 

  39. Marriott, G., Heidecker, M., Diamandis, E. P., and Yan-Marriott, Y. Time-resolved delayed luminescence image microscopy using a europium ion chelate complex. Biophys. J. 67, 957–965, 1994.

    CAS  Google Scholar 

  40. de Haas, R. R., Verwoerd, N. P., van der Corput, M. P., van Gijlswijk, R. P., Siitari, H., and Tanke, H. J. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J. Histochem. Cytochem. 44, 1091–1099, 1996.

    Google Scholar 

  41. Christopoulos, T. K., and Diamandis, E. P. Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelates. Anal. Chem. 64, 342–346, 1992.

    Article  CAS  Google Scholar 

  42. Chiu, N. H., Christopoulos, T. K., and Peltier, J. Sandwich-type deoxyribonucleic acid hybridization assays based on enzyme amplified time-resolved fluorometry. Analyst 123, 1315–1319, 1998.

    Article  CAS  Google Scholar 

  43. Evangelista, R. A., Wong, H. E., Templeton, E. F., Granger, T., Allore, B., and Pollak, A. Alkyl-and aryl-substituted salicyl phosphates as detection reagents in enzyme-amplified fluorescence DNA hybridization assays on solid support. Anal. Biochem. 203, 218–26, 1992.

    Article  CAS  Google Scholar 

  44. Templeton, E. F., Wong, H. E., Evangelista, R. A., Granger, T., and Pollak, A. Time-resolved fluorescence detection of enzyme-amplified lanthanide luminescence for nucleic acid hybridization assays. Clin. Chem. 37, 1506–1512, 1991.

    CAS  Google Scholar 

  45. Ioannou, P. C., and Christopoulos, T. K. Two-round enzymatic amplification combined with time-resolved fluorometry of Tb3+ chelates for enhanced sensitivity in DNA hybridization assays. Anal. Chem. 70, 698–702, 1998.

    Article  CAS  Google Scholar 

  46. Galvan, B., Christopoulos, T. K., and Diamandis, E. P. Detection of prostate-specific antigen mRNA by reverse transcription polymerase chain reaction and time-resolved fluorometry. Clin. Chem. 41, 1705–1709, 1995.

    CAS  Google Scholar 

  47. Galvan, B., and Christopoulos, T. K. Quantitative reverse transcriptase-polymerase chain reaction for prostate-specific antigen mRNA. Clin. Biochem. 30, 391–397, 1997.

    Article  CAS  Google Scholar 

  48. Halonen, P., Rocha, E., Hierholzer, J., Holloway, B., Hyypia, T., Hurskainen, P., and Pallansch, M. Detection of enteroviruses and rhinoviruses in clinical specimens by PCR and liquid-phase hybridization. J. Clin. Microbiol. 33, 648–653, 1995.

    CAS  Google Scholar 

  49. Dahlén, P., Iitiä, A., Mukkala, V. M., Hurskainen, P., and Kwiatkowski, M. The use of europium (Eu3+) labelled primers in PCR amplification of specific target DNA. Mol. Cell. Probes 5, 143–149, 1991.

    Google Scholar 

  50. Ylikoski, A., Sjoroos, M., Lundwall, A., Karp, M., Lovgren, T., Lilja, H., and Iitia, A. Quantitative reverse transcription-PCR assay with an internal standard for the detection of prostatespecific antigen mRNA. Clin. Chem. 45, 1397–1407, 1999.

    CAS  Google Scholar 

  51. Iitia, A., Hogdall, E., Dahlen, P., Hurskainen, P., Vuust, J., and Siitari, H. Detection of mutation delta F508 in the cystic fibrosis gene using allele-specific PCR primers and time-resolved fluorometry. PCR Methods Appl. 2, 157–162, 1992.

    CAS  Google Scholar 

  52. Ried, T., Baldini, A., Rand, T. C., and Ward, D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89, 1388–1392, 1992.

    CAS  Google Scholar 

  53. Speicher, M. R., Gwyn, B. S., and Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375, 1996.

    Article  CAS  Google Scholar 

  54. Sjoroos, M., Iitia, A., Ilonen, J., Reijonen, H., and Lovgren, T. Triple-label hybridization assay for type-1 diabetes-related HLA alleles. Biotechniques 18, 870–877, 1995.

    CAS  Google Scholar 

  55. Beverloo, H. B., van Schadewijk, A., Zijlmans, H. J., Verwoerd, N. P., Bonnett, J., Vrolijk, H., Tanke, and H. J. A comparison of the detection sensitivity of lymphocyte membrane antigens using fluorescein and phosphor immunoconjugates. J. Histochem. Cytochem. 41, 719–725, 1993.

    CAS  Google Scholar 

  56. Marriott, G., Clegg, R. M., Arndt-Jovin, D. J., and Jovin, T. M. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging. Biophys. J. 60, 1374–1387, 1991.

    Article  CAS  Google Scholar 

  57. Tanke, H. J., De Haas, R. R., Sagner, G., Ganser, M., and van Gijlswijk, R. P. Use of platinum coproporphyrin and delayed luminescence imaging to extend the number of targets FISH karyotyping. Cytometry 33, 453–459. 1998.

    Article  CAS  Google Scholar 

  58. Verwoerd, N. P., Hennink, E. J., Bonnet, J., Van der Geest, C. R. G., and Tanke, H. J. Use of ferroelectric liquid crystal shutters for time-resolved fluorescence microscopy. Cytometry 16, 113–117, 1994.

    Article  CAS  Google Scholar 

  59. Hennink, E. J., de Haas, R., Verwoerd, N. P., and Tanke, H. J. Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry 24, 312–320, 1996.

    Article  CAS  Google Scholar 

  60. Periasamy, A., Siadat-Pajouh, M., Wodnicki, P., Wang, X. F., and Herman, B. Time-gated fluorescence microscopy in clinical imaging. Microsc. Anal. 11, 33–35, 1995.

    Google Scholar 

  61. Seveus, L., Vaisala, M., Hemmila, I., Kojola, H., Roomans, G. M., and Soini, E. Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability. Microsc. Res. Tech. 28, 149–154, 1994.

    CAS  Google Scholar 

  62. Seveus, L., Vaisala, M., Syrjanen, S., Sandberg, M., Kuusisto, A., Harju, R., Salo, J., Hemmilä, I., Kojola, H., and Soini, E. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytomelry 13, 329–338, 1992.

    CAS  Google Scholar 

  63. Bjartell, A., Laine, S., Pettersson, K., Nilsson, E., Lövgren, T., and Lilja, H. Time-resolved fluorescence in immunocytochemical detection of prostate-specific antigen in prostatic tissue sections. Histochem. J. 31, 45–52, 1999.

    Article  CAS  Google Scholar 

  64. Mantrova, E. Y., Demcheva, M. V., and Savitsky, A. P. Universal phophorescence immunoassay. Anal. Biochem. 219, 109–114, 1994.

    Article  CAS  Google Scholar 

  65. de Haas, R. R., van Gijlswijk, R. P., van der Tol, E. B., Zijlmans, H. J., Bakker-Schut, T., Bonnet, J., Verwoerd, N. P., and Tanke, H. J. Platinum porphyrins as phosphorescent label for time-resolved microscopy. J. Histochem. Cytochem. 45, 1279–1292, 1997.

    Google Scholar 

  66. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. New York: Kluwer Academic/Plenum, 1999.

    Google Scholar 

  67. Cantor, C. R., and Schimmel, P. R. Biophysical Chemistry. San Francisco: W. H. Freeman, 1980.

    Google Scholar 

  68. Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotech. 6, 103–110, 1995.

    CAS  Google Scholar 

  69. Clegg, R. M. Fluorescence resonance energy transfer. In Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. New York: John Wiley & Sons, 1996, pp. 179–251.

    Google Scholar 

  70. van der Meer, B. W., Coker, G., III, and Chen, S. Y. Resonance Energy Transfer: Theory and Data. New York: VCH Publishers, 1994.

    Google Scholar 

  71. dos Remedios, C. G., and Moens, P. D. J. Fluorescence resonance energy transfer-Applications in protein chemistry. In Resonance Energy Transfer, D. L. Andrews and A. A. Demidov, eds. Chichester, UK: John Wiley and Sons, 1999, pp. 1–64.

    Google Scholar 

  72. Fairclough, R., H., and Cantor, C., R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 48, 347–379, 1978.

    CAS  Google Scholar 

  73. Herman, B. Resonance energy transfer microscopy. Methods Cell. Biol. 30, 219–243, 1989.

    CAS  Google Scholar 

  74. Selvin, P. R. Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334, 1995.

    CAS  Google Scholar 

  75. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846, 1978.

    Article  CAS  Google Scholar 

  76. Blomberg, K., Hurskainen, P., and Hemmila, I. (1999) Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the B subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861, 1999.

    CAS  Google Scholar 

  77. Burmeister-Getz, E., Cooke, R., and Selvin, P. R. Luminescence resonance energy transfer measurements in myosin. Biophys. J. 75, 2451–2458, 1998.

    Google Scholar 

  78. Root, D. D. In situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer. Proc. Natl. Acad. Sci. USA 94, 5685–5690, 1997.

    Article  CAS  Google Scholar 

  79. Stenroos, K., Hurskainen, P., Eriksson, S., Hemmila, I., Blomberg, K., and Lindqvist, C. Homogeneous time-resolved IL-2-IL-2R alpha assay using fluorescence resonance energy transfer. Cytokine 10, 495–499, 1998.

    Article  CAS  Google Scholar 

  80. Xiao, M., Li, H., Snyder, G. E., Cooke, R., G. Yount, R., and Selvin, P. R. Conformational changes between the active-site and regulatory light chain of myosin as determined by luminescence resonance energy transfer: The effect of nucleotides and actin. Proc. Natl. Acad. Sci. USA 95, 15309–15314, 1998.

    CAS  Google Scholar 

  81. Xu, J., and Root, D. D. Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. J. Struct. Biol. 123, 150–61, 1998.

    Article  CAS  Google Scholar 

  82. Chen, J., and Selvin, P. R. Lifetime and color-tailored fluorophores in the micro-to milli-second time regime. J. Am. Chem. Soc. 122, 657–660, 2000.

    CAS  Google Scholar 

  83. Heyduk, E., and Heyduk, T. Thiol-reactive luminescent Europium chelates: Luminescence probes for resonance energy transfer distance measurements in biomolecules. Anal. Biochem. 248, 216–227, 1997.

    Article  CAS  Google Scholar 

  84. Heyduk, E., and Heyduk, T. Architecture of a complex between the sigma 70 subunit of Escherichia coli RNA polymerase and the nontemplate strand oligonucleotide. Luminescence resonance energy transfer study. J. Biol. Chem. 274, 3315–3322, 1999.

    Article  CAS  Google Scholar 

  85. Heyduk, E., Heyduk, T., Claus, P., and Wisniewski, J. R. Conformational changes of DNA induced by binding of chironomus high mobility group protein la (cHMGla). J. Biol. Chem. 272, 19763–19770, 1997.

    Article  CAS  Google Scholar 

  86. Li, M., and Selvin, P. R. Amine-reactive forms of a luminescent DTPA chelate of terbium and europium: Attachment to DNA and energy transfer measurements. Bioconj. Chem. 8, 127–132, 1997.

    CAS  Google Scholar 

  87. Selvin, P. R., and Hearst, J. E. Luminescence energy transfer using a terbium chelate: Improvements on fluorescence energy transfer. Proc. Natl. Acad. Sci. USA 91, 10024–10028, 1994.

    CAS  Google Scholar 

  88. Selvin, P. R., Rana, T. M., and Hearst, J. E. Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029–6030, 1994.

    Article  CAS  Google Scholar 

  89. Schobel, U., Egelhaaf, H.-J., Brecht, A., Oelkrug, D., and Gauglitz, G. New donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconj. Chem. 10, 1107–1114, 1999.

    CAS  Google Scholar 

  90. Horrocks, W. D., Jr., and Sudnick, D. R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–350, 1979.

    Article  CAS  Google Scholar 

  91. Reifenberger, J. G., Snydcr, G. E., and Selvin, P. R. Polarization of luminescent lanthanide chelates. Biophys. J. 82, 430a, 2002.

    Google Scholar 

  92. Vereb, G., Jares-Erijman, E., Selvin, P. R., and Jovin, T. M. Time and spectrally resolved imaging microscopy of lanthanide chelates. Biophys. J. 75, 2210–2222, 1998.

    Google Scholar 

  93. Xiao, M., and Selvin, P. R. An improved instrument for measuring time-resolved lanthanide emission and resonance energy transfer. Rev. Sci. Inst. 70, 3877–3881, 1999.

    CAS  Google Scholar 

  94. Callaci, S., Heyduk, E., and Heyduk, T. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit. Mol. Cell. 3, 229–238, 1999.

    Article  CAS  Google Scholar 

  95. Helmann, J. D., and deHaseth, P. L. Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry 38, 5959–5967, 1999.

    Article  CAS  Google Scholar 

  96. Malhotra, A., Severinova, E., and Darst, S. A. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 87, 127–136, 1996.

    Article  CAS  Google Scholar 

  97. Gadella, T. W. J., Jovin, T. M., and Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM)-Spatial resolution of microstructures on the nanosecond time scale. Biophys. Chem. 48, 221–239, 1993.

    Article  CAS  Google Scholar 

  98. Lakowicz, J. R. Long lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol. 278, 295–321, 1997.

    Google Scholar 

  99. Benson, S. C., Mathies, R. A., and Glazer, A. N. Heterodimeric DNA-binding dyes designed for energy transfer: Stability and applications of the DNA complexes. Nucleic Acids Res. 21, 5720–5726, 1993.

    CAS  Google Scholar 

  100. Glazer, A., and Mathies, R. Energy-transfer fluorescent reagents for DNA analyses. Curr: Opin. Biotechnol. 8, 94–102, 1997.

    Article  CAS  Google Scholar 

  101. Ju, J., Ruan, C., Fuller, C. W., Glazer, A. N., and Mathies, R. A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Nat. Acad. Sci. USA 92, 4347–4351, 1995.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Selvin, P.R. (2003). Lanthanide-Labeled DNA. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 7. Springer, Boston, MA. https://doi.org/10.1007/0-306-47947-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47947-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-47387-6

  • Online ISBN: 978-0-306-47947-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics