Skip to main content

Inference of Genetic Regulatory Networks Via Best-Fit Extensions

  • Chapter
Computational and Statistical Approaches to Genomics

Conclusions

The ability to efficiently infer the structure of Boolean networks has immense potential for understanding the regulatory interactions in real genetic networks. We have considered a learning strategy that is well suited for situations in which inconsistencies in observations are likely to occur. This strategy produces a Boolean network that makes as few misclassifications as possible and is a generalization of the well-known Consistency Problem. We have focused on the computational complexity of this problem. It turns out that for many function classes, the Best-Fit Extension Problem for Boolean networks is polynomial-time solvable, including those networks having bounded indegree and those in which no assumptions whatsoever about the functions are made. This promising result provides motivation for developing efficient algorithms for inferring network structures from gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akutsu, T., Kuhara, S., Maruyama, O. and Miyano, S. (1998) Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions. Proc. the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’ 98), 695–702.

    Google Scholar 

  • Akutsu, T., Miyano, S. and Kuhara, S. (1999) Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model. Pacific Symposium on Biocomputing 4, 17–28.

    Google Scholar 

  • Akutsu, T., Miyano, S., and Kuhara, S. (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16, 727–734.

    Article  PubMed  CAS  Google Scholar 

  • Alter, O., Brown, P. O. and Botstein, (2000) D. Singularvalue decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97:18, 10101–10106.

    Article  PubMed  CAS  Google Scholar 

  • Angluin, D. (1987) Learning regular sets from queries and counterexamples. Information and Computation, 75:2, 87–106.

    Article  Google Scholar 

  • Ben-Dor, A. and Yakhini, Z. (1999) Clustering Gene Expression Patterns Proc. of the 3rd International Conference on Computational Molecular Biology, 3342. Lyon, France: ACM Press.

    Google Scholar 

  • Boros, E., Ibaraki, T., and Makino, K. (1998) Error-Free and Best-Fit Extensions of Partially Defined Boolean Functions. Information and Computation, 140, 254–283.

    Article  Google Scholar 

  • Brazma, A. and Vilo, J. (2000) Gene expression data analysis. FEBS Letters 480, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Celis, J. E., Kruhøffer, M., Gromova, I., Frederiksen, C., Østergaard, M., Thykjaer, T., Gromov, P., Yu, J., Pálsdóttir, H., Magnusson, N., & Ørntoft, T. F. (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Letteers 480, 2–16.

    CAS  Google Scholar 

  • D’Haeseleer, P., Wen, X., Fuhrman, S. and Somogyi, R. (1999) Linear modeling of mRNA expression levels during CNS development and injury Pacific Symposium on Biocomputing, 4, 41–52.

    Google Scholar 

  • DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997) Exploring the metabolic and genetic contol of gene expression on a genomic scale. Science, 278, 680–686.

    Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000) Using Bayesian Network to Analyze Expression Data. Journal of Computational Biology, 7, 601–620.

    Article  PubMed  CAS  Google Scholar 

  • Gabbouj, M., Yu, P-T., and Coyle, E. J. (1992) Convergence behavior and root signal sets of stack filters. Circuits Systems & Signal Processing, 11:1, 171–193.

    Google Scholar 

  • Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., & Fedoroff, N. V. (2000) Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proc. Natl. Acad. Sci. USA, 97, 8409–8414.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S. (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Journal of Molecular Medicine 77, 469–480.

    PubMed  CAS  Google Scholar 

  • Iyer, V. R., Eisen, M. B., Ross, D. T., Schuler, G., Moore, T., Lee, J. C. F., Trent, J. M., Staudt, L. M., Hudson Jr., J., Boguski, M. S., Lashkari, D., Shalon, D., Botstein, D., and Brown, P. O. (1999) The transcriptional program in the response of human fibroblasts to serum. Science, 283, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Kaski, S., Nikkilä, J., Törrönen, P., Castrén, E., and Wong, G. (2001) Analysis and visualization of gene expression data using self-organizing maps. IEEE — EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP-01), Baltimore, Maryland, June 3–6.

    Google Scholar 

  • Kauffman, S. A. (1993) The origins of order: Self-organization and selection in evolution, Oxford University Press, New York.

    Google Scholar 

  • Kearns, M. J. and Vazirani, U. V. (1994) An Introduction to Computational Learning Theory, MIT Press.

    Google Scholar 

  • Liang, S., Fuhrman, S. and Somogyi, R. (1998) REVEAL, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures. Pacific Symposium on Biocomputing 3, 18–29.

    Google Scholar 

  • Moran, G. (1995) On the period-two-property of the majority operator in infinite graphs. Trans. Amer. Math. Soc. 347, No. 5, 1649–1667.

    Google Scholar 

  • Murphy, K. and Mian, S. (1999) Modelling Gene Expression Data using Dynamic Bayesian Networks. Technical Report, University of California, Berkeley.

    Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., and Brown, P.O. (1995) Quantitative monitoring of gene expression pattern with a complementing DNA microarray. Science, 270, 467–470.

    PubMed  CAS  Google Scholar 

  • Shmulevich, I. and Zhang, W. (in press) Binary Analysis and Optimization-Based Normalization of Gene Expression Data, Bioinformatics.

    Google Scholar 

  • Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (in press) Probabilistic Boolean Networks: A Rule-based Uncertainty Model for Gene Regulatory Networks. Bioinformatics.

    Google Scholar 

  • Szallasi, Z. and Liang, S. (1998) Modeling the Normal and Neoplastic Cell Cycle With Realistic Boolean Genetic Networks: Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies. Pacific Symposium on Biocomputing 3, 66–76.

    Google Scholar 

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., & Golub, T. R. (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.

    Article  PubMed  CAS  Google Scholar 

  • Thieffry, D., Huerta, A. M., Pérez-Rueda, E., and Collado-Vides, J. (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays, 20:5, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • van Someren, E. P., Wessels, L.F.A., and Reinders, M.J.T. (2000) Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), San Diego, August 19–23.

    Google Scholar 

  • Valiant, L. G. (1984) A theory of the learnable. Comm. Assoc. Comput. Mach, 27, 1134–1142.

    Google Scholar 

  • Weaver, D.C., Workman, C.T. and Stormo, G.D. (1999) Modeling Regulatory Networks with Weight Matrices. Pacific Symposium on Biocomputing, 4, 112–123.

    Google Scholar 

  • Wen, X., Fuhrman, S., Michaels, G. S., Carr, D. B., Smith, S., Barker, J. L., and Somogyi, R. (1998) Large-Scale Temporal Gene Expression Mapping of Central Nervous System Development. Proc Natl Acad Sci USA, 95, 334–339.

    PubMed  CAS  Google Scholar 

  • Wuensche, A. (1998) Genomic Regulation Modeled as a Network with Basins of Attraction. Pacific Symp. on Biocomp. 3, 89–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shmulevich, I., Saarinen, A., Yli-Harja, O., Astola, J. (2003). Inference of Genetic Regulatory Networks Via Best-Fit Extensions. In: Zhang, W., Shmulevich, I. (eds) Computational and Statistical Approaches to Genomics. Springer, Boston, MA. https://doi.org/10.1007/0-306-47825-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47825-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7023-5

  • Online ISBN: 978-0-306-47825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics