Skip to main content

The Roles of Map Kinases in Controling Cancer Metastasis

  • Chapter
Cancer Metastasis — Related Genes

Part of the book series: Cancer Metastasis — Biology and Treatment ((CMBT,volume 3))

Concluding Remarks

The MAP kinases have been implicated in cell growth and differentiation. Dysregulation of these pathways results in the increased incidence of tumorgenicity and metastasis. The mechanisms by which these pathways lead to cancer have yet to be elucidated. Recently, Taguchi et al. have shown that blocking the interaction of the receptor for advanced glycation end products (RAGE) and its ligand, amphoterin by various strategies, such as the administration of the soluble, extracellular region of RAGE, resulted in the reduction of tumour volume and metastases in mice (95). interestingly, the inhibition of RAGE-amphoterin interaction resulted in decreased ERK1/2, SAPK, and p38 MAP kinase activities, and reduced expression of MMP-2 and MMP-9 (95).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blenis J. Signal transduction via the MAP kinases: Proceed at your own RSK. Proc. Natl. Acad. Sci. 1993; 90: 5889–5892.

    PubMed  CAS  Google Scholar 

  2. Davis R. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 1993; 268: 14553–14556.

    PubMed  CAS  Google Scholar 

  3. Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995; 9: 726–735.

    PubMed  CAS  Google Scholar 

  4. Davis RJ. MAPKs: new JNK expands the group. TIBS. 1994; 19.

    Google Scholar 

  5. Brott BK, Alessandrini A, Largaespada DA et al. MEK2 is a kinase realted MEK1 and is differentially expressed in murine tissues. Cell Growth and Diff. 1993; 4: 921–929.

    CAS  Google Scholar 

  6. Crews CM, Alessandrini A, Erikson RL. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science. 1992; 258: 478–480.

    PubMed  CAS  Google Scholar 

  7. Seger R, Ahn NG, Posada J et al. Purification and characterization of mitogenactivated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J. Biol. Chem. 1992; 267: 14373–14381.

    PubMed  CAS  Google Scholar 

  8. Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3’,5’ — monophosphate. Science. 1993; 262: 1065–1069.

    PubMed  CAS  Google Scholar 

  9. Wu J, Harrison JK, Dent P, Lynch KR, Weber MJ, Sturgill TW. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 1993; 13: 4539–4548.

    PubMed  CAS  Google Scholar 

  10. Zheng C-F, Guan K-L. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 1993; 268: 11435–11439.

    PubMed  CAS  Google Scholar 

  11. Kyriakis JM, Avruch J. Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays. 1996; 18: 567–577.

    Article  PubMed  CAS  Google Scholar 

  12. Force T, Pombo CM, Avruch JA, Bonventre JV, Kyriakis JM. Stress-activated protein kinases in cardiovascular disease. Circ. Res. 1996; 78: 947–953.

    PubMed  CAS  Google Scholar 

  13. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell. 1990; 62: 481–492.

    Article  PubMed  CAS  Google Scholar 

  14. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 1996; 271: 24313–24316.

    PubMed  CAS  Google Scholar 

  15. Kyriakis JM, Avruch J. pp54 Microtubule-associated Protein 2 Kinase. J. Biol. Chem. 1990; 265: 17355–17363.

    PubMed  CAS  Google Scholar 

  16. Kyriakis JM, Banerjee P, Nikolakaki E et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994; 369: 156–160.

    Article  PubMed  CAS  Google Scholar 

  17. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994; 369: 411–414.

    Article  PubMed  CAS  Google Scholar 

  18. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994; 264: 1463–1467.

    PubMed  CAS  Google Scholar 

  19. Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995; 376: 191–194.

    Article  PubMed  CAS  Google Scholar 

  20. Xiao B, Smerdon SJ, Jones DH et al. Structure of a 14-3-3 protein and implications for coordination of multiple signaling pathways. Nature. 1995; 376: 188–191.

    Article  PubMed  CAS  Google Scholar 

  21. Li S, Janosch P, Tanji M et al. Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. EMBO J. 1995; 14: 685–696.

    PubMed  CAS  Google Scholar 

  22. Marshall CJ. Raf gets it together. Nature. 1996; 383: 127–128.

    PubMed  CAS  Google Scholar 

  23. Alessandrini A, Brott BK, Erikson RL. Differential expression of MEK1 and MEK2 during mouse development. Cell Growth Differ. 1997; 8: 505–511.

    PubMed  CAS  Google Scholar 

  24. Wu X, Noh SJ, Zhou G, Dixon JE, Guan K-L. Selective actiation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J. Biol. Chem. 1996; 271: 3265–3271.

    PubMed  CAS  Google Scholar 

  25. Jelinek T, Catling AD, Reuter CW, Moodie SA, Wolfman A, Weber MJ. RAS and RAF-1 form a signaling complex with MEK-1 but not MEK-2. Mol. Cell. Biol. 1994; 14: 8212–8218.

    PubMed  CAS  Google Scholar 

  26. Catling AD. A proline-rich sequence unique to MEK1 and MEK2... Mol. Cell. Biol. 1995; 15: 5214–5225.

    PubMed  CAS  Google Scholar 

  27. Downey GP, Butler JR, Brumell J et al. Chemotactic peptide-induced activation of MEK-2, the predominant isoform in human neutrophils. J. Biol. Chem. 1996; 271: 21005–21011.

    Article  PubMed  CAS  Google Scholar 

  28. Sturgill TW, Ray LB, Erikson E, Maller JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature. 1988; 334: 715–718.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao Y, Bjorbaek C, Weremowicz S, Morton C, Moller DE. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor stimulated kinase function and nuclear translocation. Mol. Cell. Biol. 1995; 15: 4353–4363.

    PubMed  CAS  Google Scholar 

  30. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathways to gene activation by RSK2, a growth factor-regulated CREB kinase. Science. 1996; 273: 959–960.

    PubMed  CAS  Google Scholar 

  31. Fukunaga R, Hunter T. Mnk1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997; 16: 1221–1233.

    Article  Google Scholar 

  32. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997; 16: 1909–1920.

    Article  PubMed  CAS  Google Scholar 

  33. Flynn A, Proud CG. The role of eIF4 in cell proliferation. Cancer Surv. 1996; 27: 293–310.

    PubMed  CAS  Google Scholar 

  34. Lenormand P, Sardet C, Pages G, LĽAllemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42 and p44) but not of their activator MAP kinase kinase (p45) in fibroblasts. J. Cell Biol. 1993; 122: 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez F, Seth A, Raden D, Bowman D, Fay F, Davis R. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J. Cell Biol. 1993; 122: 1089–1101.

    Article  PubMed  CAS  Google Scholar 

  36. Treisman R. Regulation of transcription by MAP kinasecascades. Curr. Opin. Cell. Biol. 1996; 8: 205–215.

    Article  PubMed  CAS  Google Scholar 

  37. Treisman R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 1995; 14: 4905–4913.

    PubMed  CAS  Google Scholar 

  38. Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62ICF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature. 1992; 358: 414–416.

    Article  PubMed  CAS  Google Scholar 

  39. Grana X, Reddy EP. Cell cycle control in mammalian cells. Oncogene. 1995; 11: 211–219.

    PubMed  CAS  Google Scholar 

  40. Lavoie JN, LĽAllemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/44 MAPK and negatively by the p38/HOG MAPK pathway. J. Biol. Chem. 1996; 271: 20608–20616.

    PubMed  CAS  Google Scholar 

  41. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cipl. Mol Cell Biol. 1997; 17: 5598–5611.

    PubMed  CAS  Google Scholar 

  42. Sewing A, Wiseman B, Lloyd AC, Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol. 1997; 17: 5588–5597.

    PubMed  CAS  Google Scholar 

  43. Alessandrini A, Chiaur DS, Pagano M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia. 1997; 11: 342–345.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf [In Process Citation]. Genes Dev. 1998; 12: 2997–3007.

    PubMed  CAS  Google Scholar 

  45. Lin AW, Barradas M, Stone JC, van AL, Serrano M, Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling [In Process Citation]. Genes Dev. 1998; 12: 3008–3019.

    PubMed  CAS  Google Scholar 

  46. Sánchez I, Hughes RT, Mayer BJ et al. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-jun. Nature. 1994; 372: 794–797.

    PubMed  Google Scholar 

  47. Dérijard B, Hibi M, Wu IH et al. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994; 76: 1025–1037.

    PubMed  Google Scholar 

  48. Lange-Carter CA, Johnson GL. Ras-Dependent Growth Factor Regulation of MEK kinase in PC12 Cells. Science. 1994; 265: 1458–1461.

    PubMed  CAS  Google Scholar 

  49. Yan M, Dai T, Deak JC et al. Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature. 1994; 372: 798–800.

    PubMed  CAS  Google Scholar 

  50. Zhang S, Han J, Sells MA et al. Rho family GTPases regulate p38 MAP kinase through the downstream mediator Pak1. J. Biol. Chem. 1995; 270: 23934–23936.

    PubMed  CAS  Google Scholar 

  51. Pombo C, Kehrl J, Sanchez I et al. Activation of the SAPK pathway by the human STE20 homolog germinal centre kinase. Nature. 1995; 377: 750–754.

    Article  PubMed  CAS  Google Scholar 

  52. Force T, Bonventre JV. Growth factors and mitogen-activated protein kinases. Hypertension. 1998; 31(part 2): 152–161.

    PubMed  CAS  Google Scholar 

  53. Pulverer B, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phophorylation of c-jun mediated by MAP kinases. Nature. 1991; 353: 670–674.

    Article  PubMed  CAS  Google Scholar 

  54. Morooka H, Bonventre JV, Pombo CM, Kyriakis JM, Force T. Ischemia and reperfusion enhance ATF-2 and c-Jun binding to cAMP response elements and to an AP-1 binding site from the c-jun promoter. J. Biol. Chem. 1995; 270: 30084–30092.

    PubMed  CAS  Google Scholar 

  55. Cohen P. The search for physiological substrates of mitogen-and stress-activated protein kinases in mammalian cells. Trends Cell Biol. 1997; 7: 353–361.

    Article  CAS  Google Scholar 

  56. Whitmarsh AJ, Yang S-H, Su M-S, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen-activated protein kinases in activation of ternary complex factors. Mol. Cell. Biol. 1997; 17: 2360–2371.

    PubMed  CAS  Google Scholar 

  57. Whitmarsh AJ, Yang SH, Su MS, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol. 1997; 17: 2360–2371.

    PubMed  CAS  Google Scholar 

  58. Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996; 272: 1347–1349.

    PubMed  CAS  Google Scholar 

  59. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb M. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. Embo J. 1996; 15: 4629–4642.

    PubMed  CAS  Google Scholar 

  60. Saklatvala J, Rawlinson L, Waller RJ et al. Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J. Biol. Chem. 1996; 271: 6586–6589.

    PubMed  CAS  Google Scholar 

  61. Kramer RM, Roberts EF, Um SL et al. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 in thrombin-stimulated platelets. J. Biol. Chem. 1996; 271: 27723–27729.

    Article  PubMed  CAS  Google Scholar 

  62. Alessandrini A, Greulich H, Huang W, Erikson RL. Mek1 phosphorylation site mutants activate Raf-1 in NIH 3T3 cells. J Biol Chem. 1996; 271: 31612–31618.

    PubMed  CAS  Google Scholar 

  63. Brunet A, Pages G, Pouyssegur J. Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene. 1994; 9: 3379–3387.

    PubMed  CAS  Google Scholar 

  64. Cowley S, Paterson H, Kemp P, Marshall CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell. 1994; 77: 841–852.

    Article  PubMed  CAS  Google Scholar 

  65. Mansour SJ, Matten WT, Hermann AS et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science. 1994; 265: 966–970.

    PubMed  CAS  Google Scholar 

  66. Webb CP, Van AL, Wigler MH, Woude GF. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998; 95: 8773–8778.

    Article  PubMed  CAS  Google Scholar 

  67. Welch DR, Sakamaki T, Pioquinto R et al. Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res. 2000; 60: 1552–1556.

    PubMed  CAS  Google Scholar 

  68. Yoshizaki T, Sato H, Furukawa M, Pagano JS. The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A. 1998; 95: 3621–3626.

    Article  PubMed  CAS  Google Scholar 

  69. Tanaka K, Iwamoto Y, Ito Y et al. Cyclic AMP-regulated synthesis of the tissue inhibitors of metalloproteinases suppresses the invasive potential of the human fibrosarcoma cell line HT1080. Cancer Res. 1995; 55: 2927–2935.

    PubMed  CAS  Google Scholar 

  70. Repassy G, Forster HC, Juhasz A, Adany R, Tamassy A, Timar J. Expression of invasion markers CD44v6/v3, NM23 and MMP2 in laryngeal and hypopharyngeal carcinoma. Pathol Oncol Res. 1998; 4: 14–21.

    PubMed  CAS  Google Scholar 

  71. Saad Z, Bramwell VH, Wilson SM, O’Malley FP, Jeacock J, Chambers AF. Expression of genes that contribute to proliferative and metastatic ability in breast cancer resected during various menstrual phases [published erratum appears in Lancet 1998 Aug 1; 352(9125): 408] [see comments]. Lancet. 1998; 351: 1170–1173.

    Article  PubMed  CAS  Google Scholar 

  72. Kawamata H, Uchida D, Hamano H et al. Active-MMP2 in cancer cell nests of oral cancer patients: correlation with lymph node metastasis. Int J Oncol. 1998; 13: 699–704.

    PubMed  CAS  Google Scholar 

  73. Kawamata H, Nakashiro K, Uchida D, Harada K, Yoshida H, Sato M. Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. Int J Cancer. 1997; 70: 120–127.

    Article  PubMed  CAS  Google Scholar 

  74. Silberman S, Janulis M, Schultz RM. Characterization of downstream Ras signals that induce alternative protease-dependent invasive phenotypes [published erratum appears in J Biol Chem 1997 Apr 25; 272(17): 11670]. J Biol Chem. 1997; 272: 5927–5935.

    PubMed  CAS  Google Scholar 

  75. Casson AG, Wilson SM, McCart JA et al. ras mutation and expression of the ras-regulated genes osteopontin and cathepsin L in human esophageal cancer. Int J Cancer. 1997; 72: 739–745.

    Article  PubMed  CAS  Google Scholar 

  76. Frade R, Rodrigues LF, Huang S, Xie K, Guillaume N, Bar EM. Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res. 1998; 58: 2733–2735.

    PubMed  CAS  Google Scholar 

  77. Yokota J. Tumor progression and metastasis. Carcinogenesis. 2000; 21: 497–503.

    Article  PubMed  CAS  Google Scholar 

  78. Gioeli D, Mandell JW, Petroni GR, Frierson HJ, Weber MJ. Activation of mitogenactivated protein kinase associated with prostate cancer progression. Cancer Res. 1999; 59: 279–284.

    PubMed  CAS  Google Scholar 

  79. Bussemakers MJ, van MR, Giroldi LA et al. Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res. 1992; 52: 2916–2922.

    PubMed  CAS  Google Scholar 

  80. Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG. Expression of Ecadherin in primary and metastatic prostate cancer. Am J Pathol. 1996; 148: 1375–1380.

    PubMed  CAS  Google Scholar 

  81. Umbas R, Schalken JA, Aalders TW et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 1992; 52: 5104–5109.

    PubMed  CAS  Google Scholar 

  82. Luo J, Lubaroff DM, Hendrix MJ. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res. 1999; 59: 3552–3556.

    PubMed  CAS  Google Scholar 

  83. Lu Q, Paredes M, Zhang J, Kosik KS. Basal extracellular signal-regulated kinase activity modulates cell-cell and cell-matrix interactions. Mol Cell Biol. 1998; 18: 3257–3265.

    PubMed  CAS  Google Scholar 

  84. Denouel GA, Douville EM, Warne PH et al. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998; 8: 46–55.

    Google Scholar 

  85. Huang S, New L, Pan Z, Han J, Nemerow GR. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrixinvasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem. 2000; 275: 12266–12272.

    PubMed  CAS  Google Scholar 

  86. Aznavoorian S, Murphy AN, Stetler SW, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer. 1993; 71: 1368–1383.

    PubMed  CAS  Google Scholar 

  87. Wang Y. The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med Res Rev. 2001; 21: 146–170.

    PubMed  Google Scholar 

  88. Stetler SW, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993; 9: 541–573.

    Google Scholar 

  89. Westermarck J, Holmstrom T, Ahonen M, Eriksson JE, Kahari VM. Enhancement of fibroblast collagenase-1 (MMP-1) gene expression by tumor promoter okadaic acid is mediated by stress-activated protein kinases Jun N-terminal kinase and p38. Matrix Biol. 1998; 17: 547–557.

    Article  PubMed  CAS  Google Scholar 

  90. Lim M, Martinez T, Jablons D et al. Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPKp38. Febs Lett. 1998; 441: 88–92.

    Article  PubMed  CAS  Google Scholar 

  91. Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res. 1998; 58: 1135–1139.

    PubMed  CAS  Google Scholar 

  92. Janulis M, Silberman S, Ambegaokar A, Gutkind JS, Schultz RM. Role of mitogenactivated protein kinases and c-Jun/AP-1 trans-activating activity in the regulation of protease mRNAs and the malignant phenotype in NIH 3T3 fibroblasts. J Biol Chem. 1999; 274: 801–813.

    Article  PubMed  CAS  Google Scholar 

  93. Teng DH, Perry WL, Hogan JK et al. Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res. 1997; 57: 4177–4182.

    PubMed  CAS  Google Scholar 

  94. Yoshida BA, Dubauskas Z, Chekmareva MA, Christiano TR, Stadler WM, Rinker SC. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res. 1999; 59: 5483–5487.

    PubMed  CAS  Google Scholar 

  95. Taguchi A, Blood DC, del TG et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000; 405: 354–360.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Alessandrini, A. (2002). The Roles of Map Kinases in Controling Cancer Metastasis. In: Welch, D.R. (eds) Cancer Metastasis — Related Genes. Cancer Metastasis — Biology and Treatment, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47821-8_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47821-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0522-0

  • Online ISBN: 978-0-306-47821-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics