Skip to main content

Summary

Sediments recovered from lakes have a considerable downcore variability of their physical parameters. In addition to palaeobiological information, such parameters provide a detailed record of palaeoenvironmental changes. New logging instruments now make available continuous, high resolution, and non-destructive physical sediment property data such as sediment colour, gamma ray density, P-wave velocity, magnetic susceptibility or elemental composition. Since many years these techniques have been used for marine sediment core investigations. Here we introduce these methods to palaeolimnological research and provide examples for their applications with laminated Tertiary and Quaternary lake sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algeo, T. J., M. Phillips, J. Jaminski & M. Fenwick, 1994. Research method papers — high-resolution X-radiography of laminated sediment cores. J. Sed. Res. A64: 665–703.

    Google Scholar 

  • Arz, H. W., J. Pätzold & G. Wefer, 1998. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-Glacial marine deposits off northeastern Brazil. Quat. Res. 50: 157–166.

    Article  Google Scholar 

  • Balsam, W. L. & B. C. Deaton, 1996. Determining the composition of late Quaternary marine sediments from NUV, VIS and NIR diffuse reflectance spectra. Mar. Geol. 134: 31–55.

    Article  Google Scholar 

  • Bassinot, F. C., 1993. Sonostratigraphy of tropical Indian Ocean giant piston cores: toward a rapid and high-resolution tool for tracking dissolution cycles in Pleistocene carbonate sediments. Earth Planet. Sci. Lett. 120: 327–344.

    Article  Google Scholar 

  • Blum, P., 1997. Physical properties handbook — A guide to the shipborard measurement of physical properties of deep-sea cores by the Ocean Drilling Program. ODP Techn. Note 26: 1–113.

    Google Scholar 

  • Breitzke, M., H. Grobe, G. Kuhn & P. Müller, 1996. Full waveform ultrasonic transmission seismograms: A fast new method for the determination of physical and sedimentological parameters of marine sediment cores. J. Geophys. Res. 101: 22,123–22,141.

    Article  Google Scholar 

  • Chi, J. & J. Mienert, 1996. Linking physical property records of Quaternary sediments to Heinrich events. Mar. Geol. 131: 57–73.

    Article  Google Scholar 

  • Davidson, J. M., J. W. Biggar & D. R. Nielsen, 1963. Gamma-radiation attenuation for measuring bulk density and transient water flow in porous materials. J. Geophys. Res. 68: 4777–4783.

    Google Scholar 

  • Dearing, J., 1994. Environmental Magnetic Susceptibility — Using the Bartington MS2 System. Kenilworth, U.K., Chi Publishing, 104 pp.

    Google Scholar 

  • Duller, G. A. T., L. Botter-Jensen & B. G. Markey, 1997. A luminescence imaging system based on a CCD camera. Radiation Measurements 27: 91–99.

    Google Scholar 

  • Ellis, D., 1987. Well Logging for Earth Scientists. Elsevier, New York, 532 pp.

    Google Scholar 

  • Evans, H. B. & C. H. Cotterell, 1970. Gamma-ray attenuation density scanner. Proc. DSDP, Ini. Rep. 1970/2: 460–471.

    Google Scholar 

  • Gerland, S. & H. Villinger, 1995. Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements. Geo-Marine Lett. 15: 111–118.

    Google Scholar 

  • Godsey, H. S., T. C. Moore, D. K. Rea & L. C. K. Shane, 1999. Post-Younger Dryas seasonality in the North American midcontinent region as recorded in Lake Huron varved sediments. Can. J. Earth Sci. 36: 533–547.

    Article  Google Scholar 

  • Gunn, D. E. & A. I. Best, 1998. A new automated nondestructive system for high resolution multisensor core logging of open sediment cores. Geo-Marine Lett. 18: 70–77.

    Google Scholar 

  • Heim, C., N. R. Nowaczyk, J. F. W. Negendank, S. Leroy & Z. Ben-Avraham, 1997. Near East desertification: evidence from the Dead Sea. Naturwissenschaften 84: 398–401.

    Article  Google Scholar 

  • Hoppie, B. W. & P. Blum, 1994. Natural gamma-ray measurements on ODP cores: introduction to procedures with examples from Leg 150. Proc. ODP, Init. Rep. 150: 51–59.

    Google Scholar 

  • Jansen, J. H. F, S. J. Van der Gaast, B. Koster & A. J. Vaars, 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar. Geol. 151: 143–153.

    Article  Google Scholar 

  • Malley, D. F, H. Rönicke, D. L. Findlay & B. Zippel, 1999. Feasability of using near-infrared reflectance spectroscopy for the analysis of C, N, P, and diatoms in lake sediments. J. Paleolim. 21: 295–306.

    Article  Google Scholar 

  • Mayer, A., 1991. Extractionof high-resolution carbonate data for palaeoclimate reconstruction. Nature 352: 148–150.

    Article  Google Scholar 

  • Mayer, L. A., C. Gobrecht & N. G. Pisias, 1996. Three-dimensional visualization of orbital forcing and climate response: interactively exploring the pacemaker of the ice ages. Geol. Runds. 85: 505–512.

    Article  Google Scholar 

  • Migeon, S., O. Weber, J.-C. Faugeres & J. Saint-Paul, 1999. SCOPIX: A new X-ray imaging system for core analysis. Geo-Marine Lett. 18: 251–255.

    Google Scholar 

  • Mingram, J., 1998. Laminated Eocene Maar-lake sediments from Eckfeld (Eifel region, Germany) and their short-term periodicities. Palaeogeogr., Palaeoclim., Palaeoecol. 140: 289–305.

    Google Scholar 

  • Nowaczyk, N. R., This Volume. Logging of magnetic susceptibility. In Last, W. M. & J. P. Smol (eds.) Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Poolton, N. R. J., L. Bøtter-Jensen, A. G. Wintle, P. J. Ypma, K. L. Knudsen, V. Mejdahl, B. Mauz, H. E. Christiansen, J. Jakobsen, F. Jorgensen & F. Willumsen, 1996. A scanning optical sensor system for measuring the luminescence of split sediment cores. Boreas 25: 195–208.

    Google Scholar 

  • Potts, P. J., 1987. A Handbook of Silicate Rock Analysis. Glasgow, Blackie, 622 pp.

    Google Scholar 

  • Preiss, K., 1968. Non-destructive laboratory measurement of marine sediment density in a core barrel using gamma radiation. Deep Sea Res. 15: 401–407.

    Google Scholar 

  • Rack, F. R., 1998. Tomorrow’s Technology Today’ A survey of emerging trends in non-destructive measurments for the geosciences, IMAGES standing committee on “New Technologies in Sediment Imaging”, p. 1–31.

    Google Scholar 

  • Schaaf, M. & J. Thurow, 1997. Tracing short cycles in long records: the study of inter-annual to inter-centennial climate change from long sediment records, examples from the Santa Barbara Basin. J. Geol. Soc., London 154: 613–622.

    Article  Google Scholar 

  • Schultheiss, P. J. & S. D. McPhail, 1989. An automated P-wave logger for recording fine scale compressional wave velocity structures in sediments. Proc. ODP, Sci. Res. 108: 407–413.

    Google Scholar 

  • Schultheiss, P. J. & J. Mienert, 1987. Whole core P-wave velocity and gamma ray attenuation logs from ODP Leg 108 (sites 657–668). Proc. DSDP, Ini. Rep. 108: 1015–1017.

    Google Scholar 

  • Schultheiss, P. J. & P. P. E. Weaver, 1992. Multi-sensor core logging for science and industry. Ocean 92, Mastering the Oceans Through Technology 2: 608–613.

    Google Scholar 

  • Weaver, P. P. E. & P. J. Schultheiss, 1990. Current methods for obtaining, logging and splitting marine sediment cores. Mar. Geophys. Res. 12: 85–100.

    Article  Google Scholar 

  • Weber, M. E., F. Niessen, G. Kuhn & M. Wiedicke, 1997. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Mar. Geol. 136: 151–172.

    Article  Google Scholar 

  • Zolitschka, B., 1998. A 14,000 year sediment yield record from Western Germany based on annually laminated sediments. Geomorphology 22: 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zolitschka, B., Mingram, J., Van Der Gaast, S., Jansen, J.H.F., Naumann, R. (2002). Sediment Logging Techniques. In: Last, W.M., Smol, J.P. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-47669-X_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47669-X_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6482-5

  • Online ISBN: 978-0-306-47669-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics