Skip to main content

Use of Paleomagnetism in Studies of Lake Sediments

  • Chapter
Tracking Environmental Change Using Lake Sediments

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 1))

Summary

SV and magnetostratigraphy studies are well established for dating and correlation of lake sediments. SV and radiocarbon studies of suitable, rapidly deposited (>30 cm/ka) Holocene lake sediments can be used to provide dating and correlation with centennial resolution for regional (≤5×103 km) paleoenvironmental studies.

Magnetostratigraphy studies, in conjunction with correlation of susceptibility records to the orbitally tuned marine δ 18O record, can provide global dating resolution of ∼10 ka for studies of lake sediments on timescales of 106–107 years. Paleointensity studies of suitable sediments provide an independent approach to dating sediments on similar timescales that can provide similar resolution.

On the other hand, studies of excursions/short events hold promise for increasing dating resolution of lake sediments on timescales of 105–106 years. Intensive study is underway that will clarify the excursion/short event stratigraphy of the last 1 Ma. In the interim, excursion/short event dating should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backus, G., R. Parker & C. Constable, 1996. Foundations of Geomagnetism. Cambridge University Press, N.Y., 369 pp.

    Google Scholar 

  • Barbetti, M. F. & M. W. McElhinny, 1976. The Lake Mungo geomagnetic excursion. Phil. Trans. r. Soc. Lond. 281: 515.

    Google Scholar 

  • Berggren, A. B., D. V. Kent, J. J. Flynn & J. A. van Couvering, 1985. Cenozoic geochronology. Bull. am. Geol. Soc. 96: 1407.

    Google Scholar 

  • Bleil, U. & G. Card, 1989. Chronology and correlation of Quaternary magnetostratigraphy and nannofossil biostratigraphy in Norwegian-Greenland Sea sediments. GEOLOG. Rundschau 78: 1173–1187.

    Google Scholar 

  • Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Science Publishers, Boston, 319 pp.

    Google Scholar 

  • Cande, S. C. & D. V. Kent, 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100: 6093–6095.

    Article  Google Scholar 

  • Collinson, D. W., 1983. Methods in Rock Magnetism and Paleomagnetism: Techniques and Instrumentation. Chapman & Hall, Lond. & N.Y., 503 pp.

    Google Scholar 

  • Cox, A., R. R. Doell & G. R. Dalrymple, 1964. Reversals of the Earth’s magnetic field. Science 144: 1537.

    Google Scholar 

  • Champion, D., 1980. Holocene Geomagnetic Secular Variation in the Western United States: Implications for the Global Geomagnetic Field. Ph.D. Thesis, California Institute of Technology, Pasadena, 280 pp.

    Google Scholar 

  • Heirtzler, J. R., G. O. Dickson, E. M. Herron, W. C. Pitman & X. LePichon, 1968. Marine magnetic anomalies, geomagnetic field reversals and motions of the ocean floor and continents. J. Geophys. Res. 73:2119.

    Google Scholar 

  • Herrero-Bevera, E., C. E. Helsley, A. M. Sarna-Woycicki, K. R. Lajoie, C. E. Meyer, M. O. McWilliams, R. M. Negrini, B. D. Turrin, J. M. Donnelly Nolan & J. C. Liddicoat, 1994. Age and correlation of a paleomagnetic episode in the western United States by 40Ar/39Ar dating and tephrochronology: the Jamaica, Blake, or a new polarity episode? J. Geophys. Res. 99: 24,091–24,103.

    Google Scholar 

  • Jacobs, J. A., 1994. Reversals of the Earth’s Magnetic Field. Cambridge University Press, Cambridge, 346 pp.

    Google Scholar 

  • Jones, B. F. & C. J. Bowser, 1978. The mineralogy and related chemistry of lake sediments. In Lerman, A. (ed.) Lakes: Chemistry, Geology, Physics. Springer, N.Y.

    Google Scholar 

  • Karlin, R. & S. Levi, 1983. Diagenesis of magnetic minerals in Recent hemipelagic sediments. Nature 303: 327–330.

    Article  Google Scholar 

  • Kawai, N., K. Yaskawa, T. Nakajima, M. Torii & S. Horie, 1972. Oscillating geomagnetic field with a recurring reversal discovered from Lake Biwa. Proc. Japan Acad. 48: 186–190.

    Google Scholar 

  • King, J. W., 1983. Geomagnetic Secular Variation Curves for Northeastern North America for the Last 9,000 Years B.P. Ph.D. Thesis, University of Minnesota, Minneapolis, 195 pp.

    Google Scholar 

  • King, J. W., S. K. Banerjee & J. Marvin, 1983a. A new rock-magnetic approach to selecting sediments for geomagnetic paleointensity studies: application to paleointensity for the last 4000 years. J. Geophys. Res. 88: 5911–5921.

    Google Scholar 

  • King, J. W., S. K. Banerjee, J. Marvin & S. Lund, 1983b. Use of small-amplitude paleomagnetic fluctuations for correlation and dating of continental climate changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 42: 167–183.

    Article  Google Scholar 

  • Langereis, C. G., M. J. Dekkers, G. J. de Lange, M. Paterne & P. J. M. van Santvoort, 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129: 75–94.

    Google Scholar 

  • Liddicoat, J. C., 1990. Aborted reversal of the palaeomagnetic field in the Brunhes Normal Chron in east-central California. Geophys. J. Int. 102: 747–752.

    Google Scholar 

  • Lund, S. P., 1996. A comparison of Holocene paleomagnetic secular variation records from North America. J. Geophys. Res. 101: 8007–8024.

    Article  Google Scholar 

  • Lund, S. P. & L. Keigwin, 1994. Measurement of the degree of smoothing in sediment paleomagnetic secular variation records: an example from late Quaternary deep-sea sediments of the Bermuda Rise, western North Atlantic Ocean. Earth Planet. Sci. Lett. 122: 317–330.

    Article  Google Scholar 

  • Martinson, D. G., W. Menke & P. Stoff, 1982. An inverse approach to signal correlation. J. Geophys. Res. 87: 4807–4818.

    Google Scholar 

  • Martinson, D. G., N. G. Pisias, J. D. Hay, J. Imbrie, T. C. Moore & N. J. Shackleton, 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat. Res. 27: 1–29.

    Article  Google Scholar 

  • Meynadier, L., J.-P. Valet, R. Weeks, N. J. Shackleton & V. L. Hagee, 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114: 39–57.

    Article  Google Scholar 

  • Meynadier, L., J.-P. Valet, F. C. Bassinot, N. J. Shackleton & Y. Guyodo, 1994. Asymmetrical saw-tooth pattern of the geomagnetic field intensity from equatorial sediments in the Pacific and Indian Oceans. Earth Planet. Sci. Lett. 126: 109–127.

    Article  Google Scholar 

  • Negrini. R. M., D. B. Erbes, A. P. Robertes, K. L. Verosub, A. M. Sarna-Wojcicki & C. E. Meyer, 1994. Repeating waveform initiated by a 180–190 ka geomagnetic excursion in western North America: implications for field behavior during polarity transitions and subsequent secular variation. J. Geophys. Res. 99: 24,105–24,119.

    Article  Google Scholar 

  • Nowaczyk, N. R. & M. Antonow, 1997. High-resolution magnetostratigraphy of four sediment cores from the Greenland Sea, I. Identification of the mono lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events. Geophys. J. Int. 131: 310–324.

    Google Scholar 

  • Nowaczyk, N. R. & M. Baumann, 1992. Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res. 39: 567–601.

    Google Scholar 

  • Peate, D. W., J. H. Chen, G. J. Wasserburg, D. A. Papanastassiou & J. W. Geissman, 1996. 238U-230Th dating of a geomagnetic excursion in Quaternary basalts of the Albuquerque Volcanoes Field, New Mexico (USA). Geophys. Res. Lett. 23: 2271–2274.

    Article  Google Scholar 

  • Peck, J. A. & J. W. King, 1996. An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia. J. Geophys. Res. 101: 11,365–11,385.

    Article  Google Scholar 

  • Reynolds, R. L. & J. W. King, 1995. Magnetic records of climate change. Rev. Geophys. Sup., U.S. National Report to International Union of Geodesy and Geophysics 1991–1994: 101–110.

    Google Scholar 

  • Ryan, W. B. F., 1972. Stratigraphy of late Quaternary sediments in the Eastern Mediterranean. In Stanley, D. J. (ed.) The Mediterranean Sea: A Natural Sedimentation Laboratory. Dowden, Hutchinson & Ross, Inc., Stroudsburg: 149–169.

    Google Scholar 

  • Shackleton, N. J. A. Berger & W. R. Peltier, 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Acad. Soc. Edinb. 81: 251–261.

    Google Scholar 

  • Shackleton, J. J., S. Crowhurst, T. Hagelberg, N. G. Pisias & D. A. Schneider, 1995. A new late neogene timescale: application to Leg 138 sites. In Pisias, N. G., L. A. Mayer, T. R. Janecek, A. Palmer-Julson & T. H. van Andel (eds.) Proceedings of the Ocean Drilling Program, Sci. Res. 138: 73–90.

    Google Scholar 

  • Stuiver, M., 1982. A high-precision calibration of the A.D. radiocarbon timescale. Radiocarbon 24: 1–26.

    Google Scholar 

  • Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31: 319–354.

    Article  Google Scholar 

  • Tauxe, L. T. Herbert, N. J. Shackleton & Y. S. Kok, 1996. Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences. Earth Planet. Sci. Lett. 140: 133–146.

    Article  Google Scholar 

  • Thompson, R., 1984. A global review of paleomagnetic results for wet lake sediments. In Haworth, E. Y. & J. W. G. Lund (eds.) Lake Sediments and Environmental History. Univ. of Minn. Press, Minneapolis: 145–164.

    Google Scholar 

  • Thompson, R. & F. Oldfield, 1986. Environmental Magnetism. Allen & Unwin, Winchester, 227 pp.

    Google Scholar 

  • Tiedemann, R., M. Sarnthein & N. J. Shackleton, 1994. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program site 659. Paleoceanography 9: 619–638.

    Article  Google Scholar 

  • Tric, E., J.-P. Valet, P. Tucholka, M. Paterne, L. Labeyrie, F. Guichard, L. Tauxe & M. Fontugne, 1992. Paleointensity of the geomagnetic field during the last 80 kyr. J. Geophys. Res. 97: 9337–9351.

    Google Scholar 

  • Webb, T. III, 1982. Temporal resolution in Holocene pollen data. Third North American Paleon. Con. Proc. 2: 569–572.

    Google Scholar 

  • Weeks, R., C. Laj, L. Endignoux, M. Fuller, A. Roberts, R. Manganne, E. Blanchard & W. Gorce, 1993. Improvements in long-core measurement techniques: applications in paleomagnetism and paleocenaography. Geophys. J. Int. 114: 651–662.

    Google Scholar 

  • Weeks, R. J., C. Laj, L. Endignoux, A. Mazaud, L. Labeyrie, A. P. Roberts, C. Kissel & E. Blanchard, 1995. Normalized natural remanent magnetization intensity during the last 240,000 years in piston cores from the central North Atlantic Ocean: geomagnetic field intensity or environmental signal? Phys. Earth Planet. Int. 87: 213–229.

    Google Scholar 

  • Williams, D. F., J. Peck, E. B. Karabanov, A.A. Prokopenko, V. Kravchinsky, J. King & M.I. Kuzmin, 1997. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278: 1114–1117.

    Google Scholar 

  • Wollin, G., D. B. Ericson, W. B. F. Ryan & J. H. Foster, 1971. Magnetism of the earth and climatic changes. Earth Planet. Sci. Lett. 12: 175–183.

    Article  Google Scholar 

  • Yang, S. J. & Q. Y. Wei, 1993. Tracking a non-dipole geomagnetic anomaly using new archcointensity results from north-east China. Geophys. J. Int. 115: 1189–1196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

King, J., Peck, J. (2002). Use of Paleomagnetism in Studies of Lake Sediments. In: Last, W.M., Smol, J.P. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/0-306-47669-X_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47669-X_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6482-5

  • Online ISBN: 978-0-306-47669-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics