Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. S., 1985. Inorganic carbon reserves of natural waters and the ecophysiological consequences of their photosynthetic depletion: (II) macrophytes. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 421–435.

    Google Scholar 

  • A group of authors, 1985. Lobsigensee — Late-glacial and Holocene environments of a lake on the Central Swiss Plateau. Dissertationes Botanicae 1985: 127–170.

    Google Scholar 

  • Ammann, B., 1989. Late-Quaternary palynology at Lobsigensee. Regional vegetation history and local lake development. Dissertationes Botanicae 137: 1–157.

    Google Scholar 

  • Andree, M., H. Oeschger, U. Siegenthaler, T. Riesen, M. Moell, B. Ammann & K. Tobolski, 1986. 14C dating of plant macrofossils in lake sediment. Radiocarbon 28: 411–416.

    Google Scholar 

  • Baines, J. T. & M. C. F. Proctor, 1980. The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytol. 86: 393–400.

    Google Scholar 

  • Baker, R. G., 1965. Late-glacial pollen and plant macrofossils from Spider Creek, southern St. Louis County, Minnesota. Geol. Soc. Amer. Bull. 756: 601–610.

    Google Scholar 

  • Baker, R. G. & P. Drake, 1994. Holocene history of prairie in midwestern United States: pollen versus plant macrofossils. Ecoscience 1: 333–339.

    Google Scholar 

  • Baker, R. G., E. A. Bettis, D. P. Schwert, D. G. Horton, C. A. Chumbley, L. A. Gonzalez & M. K. Reagan, 1996. Holocene paleoenvironments of northeast Iowa. Ecological Monographs 66: 203–234.

    Google Scholar 

  • Barnekow, L., 1999. Holocene tree dynamics in the Abisko area, northern Sweden, based on pollen and macrofossil records, and the inferred climatic changes. The Holocene 9: 253–265.

    Article  Google Scholar 

  • Barnekow, L., G. Possnert & P. Sandgren, 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden—a comparison between dated bulk sediment and macrofossil samples. Geologiska Föreningar i Stockholm Förhandlingar 120: 59–67.

    Google Scholar 

  • Beerling, D. J., H. H. Birks & F. I. Woodward, 1995. Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density of fossil leaves. J. Quat. Sci. 10: 379–384.

    Google Scholar 

  • Bennike, O., S. Björck, J. Böcher, L. Hansen, J. Heinemeier & B. Wohlfarth, 1999. Early Holocene plant and animal remains from north-east Greenland. J. Biogeogr. 26: 667–677.

    Article  Google Scholar 

  • Birks, H. H., 1973. Modern macrofossil assemblages in lake sediments in Minnesota. In Birks, H. J. B. & R. G. West (eds.) Quaternary Plant Ecology. Blackwells, Oxford: 173–189.

    Google Scholar 

  • Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Arch. Hydrobiol. 15: 1–60.

    Google Scholar 

  • Birks, H. H., 1984. Late-Quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, north-west Scotland. In Haworth, E. Y. & J. W. G. Lund (eds.) Lake Sediments and Environmental History. University of Leicester Press: 377–405.

    Google Scholar 

  • Birks, H. H., 1991. Holocene vegetational history and climatic change in west Spitsbergen-plant macrofossils from Skardtjørna, an arctic lake. The Holocene 1: 209–218.

    Google Scholar 

  • Birks, H. H., 1993. The importance of plant macrofossils in late-glacial climatic reconstructions: an example from western Norway. Quat. Sci. Rev. 12: 719–726.

    Article  Google Scholar 

  • Birks, H. H., 1994a. Late-glacial vegetational ecotones and climatic patterns in western Norway. Veg. Hist. Archaeobot. 3: 107–119.

    Google Scholar 

  • Birks, H. H., 1994b. Plant macrofossils and the Nunatak Theory of per-glacial survival. Dissertationes Botanicae 234: 129–143.

    Google Scholar 

  • Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early Holocene. J. Paleolim. 23: 7–19.

    Google Scholar 

  • Birks, H. H. & B. Ammann, 2000. Two terrestrial records of rapid climate change during the glacial-Holocene transition (14,000–9,000 calendar years B.P.) from Europe. Proc. nat. Acad. Sci. 97: 1390–1394.

    Article  Google Scholar 

  • Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem in Kråkenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J. Paleolim. 23: 91–114.

    Google Scholar 

  • Birks, H. H. & H. J. B. Birks, 2000. Future uses of pollen analysis must include plant macrofossils. J. Biogeogr. 27: 31–35.

    Article  Google Scholar 

  • Birks, H. H., W. Eide & H. J. B. Birks, 1999. Early Holocene atmospheric CO2 concentrations. Science 286: 1815–1815a.

    Google Scholar 

  • Birks, H. H., S. Gulliksen, H. Haflidason, J. Mangerud & G. Possnert, 1996b. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quat. Res. 45: 119–127.

    Article  Google Scholar 

  • Birks, H. H. & R. W. Mathewes, 1978. Studies in the vegetational history of Scotland V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytol. 80: 455–484.

    Google Scholar 

  • Birks, H. H., M. C. Whiteside, D. Stark & R. C. Bright, 1976. Recent paleolimnology of three lakes in northwestern Minnesota. Quat. Res. 6: 249–272.

    Article  Google Scholar 

  • Birks, H. H. & M. van Dinter, 1997. Betula species in the west Norwegian late-glacial interstadial and early Holocene, and the reconstruction of climate gradients. Geonytt 24: 102.

    Google Scholar 

  • Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5.

    Google Scholar 

  • Birks, H. H. + 23 others, 1996a. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286.

    Article  Google Scholar 

  • Birks, H. J. B., 1981. Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quat. Res. 16: 322–355.

    Google Scholar 

  • Birks, H. J. B. & H. H. Birks, 1980. Chapter 5 in Quaternary Palaeoecology, 66–84. Edward Arnold, London.

    Google Scholar 

  • Bondevik, S., H. H. Birks, S. Gulliksen & J. Mangerud, 1999. Late Weichselian marine 14C reservoir ages at the western coast of Norway. Quat. Res. 52: 104–114.

    Article  Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.

    Article  Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat. Sci. Rev. (in press).

    Google Scholar 

  • Chaney, R. W., 1924. Quantitative studies of the Bridge Creek Flora. Am. J. Sci. 8: 127–144.

    Article  Google Scholar 

  • Collinson, M. E., 1983. Accumulations of fruits and seeds in three small sedimentary environments in southern England and their palaeoecological implications. Ann. Bot. 52: 583–592.

    Google Scholar 

  • Cushing, E. J. & H. E. Wright, 1965. Hand-operated piston corers for lake sediments. Ecology 46: 380–384.

    Google Scholar 

  • Dickson, C. A., 1970. The study of plant macrofossils in British Quaternary deposits. In Walker, D. & R. G. West (eds.) Studies in the Vegetational History of the British Isles. Cambridge University Press, Cambridge: 233–254.

    Google Scholar 

  • Dickson, J. H., 1973. Bryophytes of the Pleistocene. Cambridge University Press, Cambridge, 256 pp.

    Google Scholar 

  • Dickson, J. H., 1986. Bryophyte analysis. In Berglund, B. E. (ed.) Handbook of Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 627–643.

    Google Scholar 

  • Digerfeldt, G., 1971. The post-glacial development of the ancient lake at Torreberga, Scania, south Sweden. Geologiska Föreningar i Stockholm Förhandlingar 93: 601–624.

    Google Scholar 

  • Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 127–143.

    Google Scholar 

  • Drake, H. & C. J. Burrows, 1980. The influx of potential macrofossils into Lady Lake, north Westland, New Zealand. New Zealand J. Bot. 18: 257–274.

    Google Scholar 

  • Dunwiddie, P. W., 1987. Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology 68: 1–11.

    Google Scholar 

  • Elias, S. A., S. K. Short & H. H. Birks, 1997. Late Wisconsin environments of the Bering Land Bridge. Palaeogeogr. Palaeoclim. Palaeoecol. 136: 293–308.

    Google Scholar 

  • Eronen, M., H. Hyvärinen & P. Zetterberg, 1999. Holocene humidity changes in northern Finnish lapland inferred from lake sediments and submerged Scots pine dated by tree-rings. The Holocene 9:569–580.

    Article  Google Scholar 

  • Eronen, M. & P. Zetterberg, 1996. Expanding megafossil-data on Holocene changes at the polar/alpine pine limit in northern Fennoscandia. Paläoklimaforschung 20: 127–134.

    Google Scholar 

  • Figge, R. A. & J. W. C. White, 1995. High-resolution Holocene and late glacial atmospheric CO2 record: variability tied to changes in thermohaline circulation. Global Biogeochemical Cycles 9: 391–403.

    Article  Google Scholar 

  • Fredskild, B., 1992. The Greenland limnophytes—their present distribution and Holocene history. Acta Bot. Fenn. 144: 93–113.

    Google Scholar 

  • Glaser, P. H., 1981. Transport and deposition of leaves and seeds on tundra: a late-glacial analog. Arct. Alp. Res. 13: 173–182.

    Google Scholar 

  • Godłowśka, M., J. K. Kozłowsi, L. Starkel & K. Wasylikowa, 1987. Neolithic settlement at Pleszów and changes in the natural environment in the Vistula valley. Przegląd Archeologiczny 34: 133–159.

    Google Scholar 

  • Godwin, H., 1975. The History of the British Flora. Cambridge University Press, Cambridge, 541 pp, 2nd edition.

    Google Scholar 

  • Goetcheus, V. G. & H. H. Birks, 2000. Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska. Quat. Sci. Rev. 20: 135–147.

    Google Scholar 

  • GreatRex, P. A., 1983. Interpretation of macrofossil assemblages from surface sampling of macroscopic plant remains in mire communities. J. Ecol. 71: 773–791.

    Google Scholar 

  • Grimm, E. C., 1990. TILIA and TILIA.GRAPH, PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data Handling Methods Newsletter 4: 5–7.

    Google Scholar 

  • Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.

    Article  Google Scholar 

  • Hannon, G. E. & M.-J. Gaillard, 1997. The plant-macrofossil record of past lake-level changes. J. Paleolim. 18: 15–28.

    Article  Google Scholar 

  • Haworth, E. Y., 1972. Diatom succession in a core from Pickerel Lake, Northeastern South Dakota. Geol. Soc. Am. Bull. 83: 157–172.

    Google Scholar 

  • Holyoak, D. T., 1984. Taphonomy of prospective plant macrofossils in a river catchment on Spitsbergen. New Phytol. 98: 405–423.

    Google Scholar 

  • Hughen, K. A., J. T. Overpeck, S. J. Lehman, M. Kashgarian, J. Southon, L. C. Peterson, R. Alley & D. M. Sigman, 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391: 65–68.

    Article  Google Scholar 

  • Jackson, S. T., 1989. Postglacial vegetational changes along an elevational gradient in the Adirondack Mountains (New York). New York State Mus. Bull. 465: 29 pp.

    Google Scholar 

  • Janssens, J. A., 1983. A quantitative method for stratigraphic analysis of bryophytes in Holocene peat. J. Ecol. 71: 189–196.

    Google Scholar 

  • Janssens, J. A., 1988. Fossil bryophytes and paleoenvironmental reconstruction of peatlands. In Glime, J. M. (ed.) Methods in Bryology. Proc. Bryol. Meth. Workshop, Mainz: 299–306. Hattori Bot. Lab. Nichinan.

    Google Scholar 

  • Janssens, J. A. Methods in Quaternary Ecology 11. Bryophytes. Geosci. Canada 17: 13–23.

    Google Scholar 

  • Jessen, K., 1949. Studies in late Quaternary deposits and flora-history of Ireland. Proc. r. Irish Acad. 52: B 6, 85–290.

    Google Scholar 

  • Jessen, K., S. T. Andersen & A. Farrington, 1959. The interglacial deposit near Gort, Co. Galway, Ireland. Proc. r. Irish Acad. 60: B 1, 1–77.

    Google Scholar 

  • Jessen, K. & A. Farrington, 1938. The bogs at Ballybetagh, near Dublin, with remarks on late-glacial conditions in Ireland. Proc. r. Irish Acad. 44: B 10, 205–260.

    Google Scholar 

  • Jessen, K. & V. Milthers, 1928. Stratigraphical and palaeontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. Danm. geol. Unders. Række 2, 28: 1–378.

    Google Scholar 

  • Jones, V. J., D. A. Hodgson & A. Chepstow-Lusty, 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene 10: 43–60.

    Google Scholar 

  • Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.

    Google Scholar 

  • Keeley, J. E. & D. R. Sandquist, 1992. Carbon: freshwater plants. Plant, Cell, Environment 15: 1021–1035.

    Google Scholar 

  • Kelly, M. & P. J. Osborne, 1965. Two faunas and floras from the alluvium at Shustoke, Warwickshire. Proc. linn. Soc. Lond. 176: 37–65.

    Google Scholar 

  • Kitagawa, H. & J. van der Plicht, 1998. Atmospheric radiocarbon calibration to 45,000 yr B.P.: Late Glacial fluctuations and cosmogenic isotope production. Science 279: 1187–1190.

    Article  Google Scholar 

  • Kremenetski, C. V., L. D. Sulerzhitsky & R. Hantemirov, 1998. Holocene history of the northern range limits of some trees and shrubs in Russia. Arct. Alp. Res. 30: 317–333.

    Google Scholar 

  • Lang, G., 1992. Some aspects of European late-and post-glacial flora history. Acta Bot. Fenn. 144: 1–17.

    Google Scholar 

  • Lemdahl, G., 2000. Late-glacial and early-Holocene Coleoptera assemblages as indicators of local environment and climate at Kråkenes Lake, western Norway. J. Paleolim. 23: 57–66.

    Article  Google Scholar 

  • Levesque, A., L. Cwynar & I. R. Walker, 1994. A multiproxy investigation of late-glacial climate and vegetation changes at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327.

    Article  Google Scholar 

  • Lotter, A. F., 1991. Absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quat. Res. 35: 321–330.

    Google Scholar 

  • Lotter, A. F., 1999. Late-glacial and Holocene vegetational history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Veg. Hist. Archaeobot. 8: 165–184.

    Google Scholar 

  • MacDonald, G. M., R. P. Beukens & W. E. Kieser, 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72: 1150–1155.

    Google Scholar 

  • MacDonald, G. M., R. P. Beukens, W. E. Kieser & D. H. Vitt, 1987. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 15: 837–840.

    Google Scholar 

  • MacDonald, G. M., B. R. Gervais, J. A. Snyder, G. A. Tarasov & O. K. Borisova, 2000. Radiocarbon dated Pinus sylvestris L. wood from beyond tree-line on the Kola Peninsula, Russia. The Holocene 10: 134–147.

    Article  Google Scholar 

  • McQueen, D. R., 1969. Macroscopic plant remains in recent lake sediments. Tuatara 17: 13–19.

    Google Scholar 

  • Nesje, A., 1992. A piston corer for lacustrine and marine sediments, Arct. Alp. Res. 24: 257–259.

    Google Scholar 

  • Odgaard, B. V., 1994. The Holocene vegetation history of northern West Jutland, Denmark. Opera Botanica 123: 171 pp.

    Google Scholar 

  • Odgaard, B., P. Rasmussen & N. J. Anderson, 1997. The macrofossil record of 20th century submerged vegetation dynamics in shallow Danish lakes. Würtzburger Geographische Manuskripte 41: 153–154.

    Google Scholar 

  • Oldfield, F., P. R. J. Crooks, D. D. Harkness & G. Petterson, 1997. AMS radiocarbon dating of organic fractions from varved lake sediments: an empirical test of reliability. J. Paleolim. 18: 87–91.

    Article  Google Scholar 

  • Pedersen, P. M. & O. Bennike, 1992. Quaternary marine macroalgae from Greenland. Norw. J. Bot. 13: 221–225.

    Google Scholar 

  • Reid, C., 1899. The origin of the British Flora. Dulau & Co., London, 191 pp.

    Google Scholar 

  • Reid, E. M., 1949. The Late-glacial flora of the Lea Valley. New Phytol. 48: 245–252.

    Google Scholar 

  • Ritchie, J. C., 1995. Tansley Review No. 83. Current trends in studies of long-term plant community dynamics. New Phytol. 130: 469–494.

    Google Scholar 

  • Rundgren, M. & D. Beerling, 1999. A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9: 509–513.

    Article  Google Scholar 

  • Rundgren, M., N. J. Loader & D. J. Beerling, 2000. Variations in the carbon isotope composition of late-Holocene plant macrofossils: a comparison of whole-leaf and cellulose trends. The Holocene 10: 149–154.

    Article  Google Scholar 

  • Ryvarden, L., 1971. Studies in seed dispersal I. Trapping of diaspores in the alpine zone at Finse, Norway. Norw. J. Bot. 18: 215–226.

    Google Scholar 

  • Schneider, R. & K. Tobolski, 1985. Lago di Ganna — Late-glacial and Holocene environments of a lake in the Southern Alps. Dissertationes Botanicae 1985: 229–271.

    Google Scholar 

  • Schwalb, A. & W. E. Dean, 1998. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12ky record of environmental changes. J. Paleolim. 20: 15–30.

    Article  Google Scholar 

  • Sernander, R., 1918. Subfossile Flechten. Flora, Jena 112: 703–724.

    Google Scholar 

  • Smith, F. A., 1985. Historical perspective on HCO 3 assimilation. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 1–15.

    Google Scholar 

  • Smits, A. J. M., M. J. H. De Lyon, G. van der Velde, P. L. M. Steentjes & J. G. M. Roelofs, 1988. Distribution of three Nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata ((Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquat. Bot. 32: 45–62.

    Article  Google Scholar 

  • Solem, J. O. & H. H. Birks, 2000. Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J. Paleolim. 23: 49–56.

    Article  Google Scholar 

  • Solhøy, I. W. & T. Solhøy, 2000. The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J. Paleolim. 23: 35–47.

    Google Scholar 

  • Spence, D. H. N. & S. C. Maberly, 1985. Occurrence and ecological importance of HCO 3 use among aquatic higher plants. In Lucas, W. J. & J. A. Berry (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists: 125–143.

    Google Scholar 

  • Spicer, R. A., 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. U.S. Geological Survey Professional Paper 1143: 77 pp.

    Google Scholar 

  • Spicer, R. A., 1989. The formation and interpretation of plant fossil assemblages. Adv. Botan. Res. 16: 95–191.

    Google Scholar 

  • Spicer, R. A. & J. A. Wolfe, 1987. Plant taphonomy of late Holocene deposits in Trinity (Clair Engle) Lake, northern California. Paleobiology 13: 227–245.

    Google Scholar 

  • Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. McCormac, J. van der Plicht & M. Spurk, 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal B.P. Radiocarbon 40: 1041–1083.

    Google Scholar 

  • Törnqvist, T. E., A. F. M. de Jong, W. A. Oosterbaan & K. van der Borg, 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566–577.

    Google Scholar 

  • Tralau, H., 1959. Extinct aquatic plants of Europe. Bot. Notiser 112: 385–406.

    Google Scholar 

  • Tralau, H., 1963. The recent and fossil distribution of some boreal and arctic montane plants in Europe. Ark. Bot. Ser.2, 5: 533–582.

    Google Scholar 

  • Turney, C. S. M., D. J. Beerling, D. D. Harkness, J. J. Lowe & E. M. Scott, 1997. Stable carbon isotope variations in northwest Europe during the last glacial-interglacial transition. J. Quat. Sci. 12: 339–344.

    Google Scholar 

  • van der Hammen, T., T. A. Wijmstra & W. H. Zagwijn, 1971. The floral record of the Late Cenozoic of Europe. In Turekian, K. K. (ed.) Late Cenozoic Glacial Ages. Yale University Press, New Haven and London: 391–424.

    Google Scholar 

  • van der Knaap, W. O., 1987. Long-distance transported pollen and spores on Spitsbergen and Jan Mayen. Pollen Spores 24: 449–453.

    Google Scholar 

  • van Dinter, M. & H. H. Birks, 1996. Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: implications for the late-glacial vegetational history of western Norway. Veg. Hist. Archaeobot. 5: 229–240.

    Google Scholar 

  • van Geel, B., G. R. Coope & T. van der Hammen, 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Rev. Palaeobot. Palynol. 60: 25–129.

    Google Scholar 

  • van Zant, K., 1979. Late glacial and postglacial pollen and plant macrofossils from Lake West Okoboji, Northwestern Iowa. Quat. Res. 12: 358–380.

    Google Scholar 

  • Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.

    Google Scholar 

  • Wagner, F., S. J. P. Bohncke, D. L. Dilcher, W. M. Kürschner, B. van Geel & H. Visscher, 1999. Century-scale shifts in early Holocene atmospheric CO2 concentration. Science 284: 1971–1973.

    Article  Google Scholar 

  • Wainman, N. & R. W. Mathewes, 1990. Distribution of plant macroremains in surface sediments of Marion Lake, southwestern British Columbia. Can. J. Bot. 68: 364–373.

    Article  Google Scholar 

  • Warner, B. G., 1988. Methods in Quaternary Ecology #3. Plant macrofossils. Geosci. Canada 15: 121–129.

    Google Scholar 

  • Wasylikowa, K., 1986. Analysis of fossil fruits and seeds. In Berglund, B. E. (ed.) Handbook of Palaeoecology and Palaeohydrology. J. Wiley & Sons Ltd. Chichester: 571–590.

    Google Scholar 

  • Wasylikowa, K., 1989. Paleoecological characteristics of the settlement periods of the Linear Pottery and Lengyel Cultures at Cracow-Nowa Huta (on the basis of plant material). Przeglad Archeologiczny 36: 57–87.

    Google Scholar 

  • Watts, W. A., 1959. Interglacial deposits at Kilbeg and Newtown, Co. Waterford. Proc. Roy. Irish Acad. 60: B 79–134.

    Google Scholar 

  • Watts, W. A., 1978. Plant Macrofossils and Quaternary Paleoecology. In Walker, D. & J. C. Guppy (eds.) Biology and Quaternary Environments. Australian Academy of Science, Canberra: 53–67.

    Google Scholar 

  • Watts, W. A., 1979. Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecol. Monographs 49: 427–469.

    Google Scholar 

  • Watts, W. A. & R. C. Bright, 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, Northeastern South Dakota. Geol. Soc. am. Bull. 79: 855–876.

    Google Scholar 

  • Watts, W. A. & T. C. Winter, 1966. Plant macrofossils from Kirchner Marsh, Minnesota — a paleoecological study. Geol. Soc. am. Bull. 77: 1339–1360.

    Google Scholar 

  • West, R. G., 1957. Interglacial deposits at Bobbitshole, Ipswich. Phil. Trans. r. Soc., Lond. B, 241: 1–31.

    Google Scholar 

  • West, R. G., R. Andrew & M. Pettit, 1993. Taphonomy of plant remains on floodplains of tundra rivers, present and Pleistocene. New Phytol. 123: 203–231.

    Google Scholar 

  • Wick, L. & W. Tinner, 1997. Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arct. Alp. Res. 29: 445–458.

    Google Scholar 

  • Wohlfarth, B., G. Skog, G. Possnert & B. Holmqvist, 1998. Pitfalls in the AMS radiocarbon dating of terrestrial macrofossils. J. Quat. Sci. 13: 137–145.

    Google Scholar 

  • Wright, H. E. & W. A. Watts, 1969. Glacial and vegetational history of northeastern Minnesota. Minnesota Geological Survey, University of Minnesota, SP-11. 59 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Birks, H.H. (2002). Plant Macrofossils. In: Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47668-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-47668-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0681-4

  • Online ISBN: 978-0-306-47668-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics