Skip to main content

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 3))

Summary

The measurement of the biogenic silica (BSi) content of sediments is a chemical estimate of the siliceous microfossil abundance. Briefly, sediments are leached with a weak base, usually Na2CO3, for a period of time (2–5 hours), and aliquots withdrawn over time. The aliquots are then measured for the amount of Si extracted and a least-squares regression is made on the increase in concentration with time to separate the Si extracted from amorphous Si compounds, e.g. diatoms, sponges, etc., from that of mineral silicates. Comparison of chemical estimates of BSi with diatom microfossil point counts demonstrate that the extraction techniques provide a valid proxy for the abundance of diatom microfossils in sediments. However, the exact choice of methodology will depend upon the type of siliceous components in the sediments and the ability of the digestion solution to dissolve those components. Therefore, both the strength of the digestion solution used and the time over which subsamples are taken should be adjusted for depending upon the type of sediment used. Application of these techniques as a proxy for siliceous microfossil abundance have been instrumental in unraveling the response of aquatic systems to nutrient enrichment and has provided important information on paleoproductivity in particular in studies of paleoclimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bavestrello, G., R. Cattaneo-Vietti, C. Cerrano, S. Cerutti & M. Sara, 1996. Contribution of sponge spicules to the composition of biogenic silica in the Ligurian Sea. P.S.Z.N. I. Mar. Ecol. 17: 41–50.

    Google Scholar 

  • Brandriss, M. E., J. R. O’Neil, M. B. Edlund & E. F. Stoermer, 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochim. Cosmochim. Acta 62: 1119–1125.

    Article  Google Scholar 

  • Chadwick, O. A., D. M. Henricks & W. D. Nettleton, 1989. Silicification of Holocene soils in Northern Monitor Valley. Nevada. Soil Soc. Amer. J. 53: 158–164.

    Google Scholar 

  • Colman, S. M., J. A. Peck, E. B. Karabanov, S. J. Carter, J. P. Bradbury, J. W. King & D. F. Williams, 1995. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378: 769–771.

    Article  Google Scholar 

  • Conley, D. J., 1988. Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry 6: 161–179.

    Article  Google Scholar 

  • Conley, D. J., 1998. An interlaboratory comparison for the measurement of biogenic silica in sediments. Mar. Chem. 63: 39–48.

    Article  Google Scholar 

  • Conley, D. J. & C. L. Schelske, 1993. Potential role of sponge spicules in influencing the silicon biogeochemistry of Florida lakes. Can. J. Fish. Aquat. Sci. 50: 296–302.

    Article  Google Scholar 

  • Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser. 101: 179–192.

    Google Scholar 

  • Cornwell, J. C., J. C. Stevenson, D. J. Conley & M. Owens, 1996. A sediment chronology of Chesapeake Bay eutrophication. Estuaries 19: 488–499.

    Google Scholar 

  • De La Rocha, C. L., M. A. Brzezinski, M. J. DeNiro & A. Shemesh, 1998. Silicon isotope composition of diatoms as an indicator of past oceanic change. Nature 395: 680–683.

    Google Scholar 

  • DeMaster, D. J., 1979. The marine budgets of silica and 32Si. Ph.D. Dissertation, Yale University, 308 pp.

    Google Scholar 

  • DeMaster, D. J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45: 1715–1732.

    Article  Google Scholar 

  • DeMaster, D. J., 1991. Measuring biogenic silica in marine sediments and suspended matter. In Marine Particles: Analysis and Characterization, Hurd, D. C. & D.W. Spenser (eds.) Geophysical Monograph 63. American Geophysical Union, Washington, D.C., pp. 363–367.

    Google Scholar 

  • Diggerfeldt, G., 1972. The post-glacial development of Lake Trummen. Folia Limnol. Scand. 16: 1–104.

    Google Scholar 

  • Eggiman, D. W., F. T. Manhiem & P. R. Betzer, 1980. Dissolution and analysis of amorphous silica in marine sediments. J. Sed. Petrol. 50: 215–225.

    Google Scholar 

  • Flower, R. J., 1993. Diatom preservation-experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269: 473–484.

    Article  Google Scholar 

  • Frühlich, F., 1989. Deep-sea biogenic silica: new structural and analytical data from infrared analysis—geological implications. Terra Res. 1: 267–273.

    Google Scholar 

  • Garnier, J., B. Leporcq, N. Sanchez & X. Philippon, 1999. Biogeochemical mass balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47: 119–146.

    Google Scholar 

  • Gehlen, M. & W. van Raaphorst, 1993. Early diagenesis of silica in sandy North Sea sediments: quantification of the solid phase. Mar. Chem. 42: 71–83.

    Article  Google Scholar 

  • Goldberg, E. D., 1958. Determination of opal in marine sediments. J. Mar. Res. 17: 71–83.

    Google Scholar 

  • Hansen, K., 1956. The profundal bottom deposits of Gribsø. In Berg, K. & I. C. Petersen (eds.) Studies on Humic, Acid Lake Gribsù. Folia Limnol. Scand. 8, Copenhagen.

    Google Scholar 

  • Humborg, C., V. Ittekkot, A. Cociasu & B. V. Bodungen, 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.

    Article  Google Scholar 

  • Humborg, C., D. J. Conley, L. Rahm, F. Wulff, A. Cociasu & V. Ittekkot, 2000. Silica retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio in press.

    Google Scholar 

  • Hurd, D. C., 1972. Factors affecting solution rate of biogenic opal in seawater. Earth Planet. Sci. Lett. 15: 411–417.

    Article  Google Scholar 

  • Juniper, S. K., P. Martineu, J. Sarrazin & Y. Gélinas, 1995. Microbial-mineral floc associated with nascent hydrothermal activity on CoAxial Segment, Juan de Fuca Ridge. Geophys. Res. Lett. 22: 179–182.

    Article  Google Scholar 

  • Kamatani, A. & O. Oku, 2000. Measuring biogenic silica in marine sediments. Mar. Chem. 68: 219–229.

    Article  Google Scholar 

  • Krausse, G. L., C. L. Schelske & C. O. Davis, 1983. Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwater Biol. 13: 1–9.

    Google Scholar 

  • Leinen, M., 1977. A normative calculation technique for determination of biogenic opal in deep sea sediments. Geochim. Cosmochim. Acta 40: 671–676.

    Google Scholar 

  • Mortlock, R. A. & P. N. Froelich, 1989. A simple and reliable method for the rapid determination of biogenic opal in pelagic sediments. Deep-Sea Res. 36: 1415–1426.

    Article  Google Scholar 

  • Müller, P. J. & R. Schneider, 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Res. 40: 425–444.

    Google Scholar 

  • Newberry, T. & C. L. Schelske, 1986. Biogenic silica record in the sediments of Little Round Lake, Ontario. Hydrobiologia 143: 293–300.

    Article  Google Scholar 

  • Nijampurkar, V. N., D. K. Rao, F. Oldfied & I. Renberg, 1998. The half-life of Si-32: A new estimate based on varved lake sediments. Earth Planet. Sci. Lett. 163: 191–196.

    Article  Google Scholar 

  • Norris, A. R. & C. T. Hackney. 1999. Silica content of a mesohaline tidal marsh in North Carolina. Estuar. Coastal Shelf Sci. 49: 597–605.

    Google Scholar 

  • Proft, G., 1994. Biogenic silica (BSi) in sediments of the Mecklenburgian lake district (Germany) and the calcite-silica relation as indicator for trophy and water level. Acta Hydroch. Hydrob 22: 177–184.

    Article  Google Scholar 

  • Pudsey, C. J., 1992. Calibration of a point-counting technique for estimation of biogenic silica in marine sediments. J. Sediment Petrol. 63: 760–762.

    Google Scholar 

  • Qiu, L., D. F. Williams, A. Gvorzdkov, E. Karabanov & M. Shimaraeva, 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21: 25–28.

    Article  Google Scholar 

  • Ragueneau, O., A. Leynaert, P. Tréguer, D. J. DeMaster & R. F. Anderson, 1996. Opal studied as a marker of paleoproductivity. EOS 77: 491, 493.

    Google Scholar 

  • Rahm, L., D. J. Conley, P. Sandén, F. Wulff & P. Stålnacke, 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios. Mar. Ecol. Prog. Ser. 130: 221–228.

    Google Scholar 

  • Renberg, I. 1976, Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–119.

    Google Scholar 

  • Rietti-Shati, M., A. Shemesh & W. Karlen, 1998. A 3000-year climatic record from biogenic silica oxygen isotopes in an equatorial high-altitude lake. Science 281: 980–982.

    Article  Google Scholar 

  • Rosqvist, G. C., M. Rietti-Shati & A. Shemesh, 1999. Late glacial to middle Holocene climatic record of lacustrine biogenic silica oxygen isotopes from a Southern Ocean island. Geology 27: 967–970.

    Article  Google Scholar 

  • Schelske, C. L., 1985. Biogeochemical silica mass balances in Lake Michigan and Lake Superior. Biogeochemistry 1: 197–218.

    Article  Google Scholar 

  • Schelske, C. L., 1988. Historic trends in Lake Michigan silica concentrations. Int. Revue ges. Hydrobiol. 73: 559–591.

    Google Scholar 

  • Schelske, C. L., 1999. Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In Stoermer, E. F. & J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, pp. 73–84.

    Google Scholar 

  • Schelske, C. L. & E. F. Stoermer, 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science 173: 423–424.

    Google Scholar 

  • Schelske, C. L., E. F. Stoermer, D. J. Conley, J. A. Robbins & R. M. Glover, 1983. Early eutrophication in the lower Great Lakes: New evidence from biogenic silica in sediments. Science 222: 320–322.

    Google Scholar 

  • Schelske, C. L., E. F. Stoermer, G. L. Fahnenstiel & M. Haibach, 1986. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. Aquat. Sci. 43: 407–415.

    Article  Google Scholar 

  • Schelske, C. L., H. Zullig & M. Boucherle, 1987. Limnological investigation of biogenic silica sedimentation and silica biogeochemistry in Lake St. Moritz and Lake Zurich. Schweiz Z. Hydrol 49: 42–50.

    Google Scholar 

  • Schwandes, L. P., 1998. Environmental durability of biogenic opal. Soil Crop Sci. Soc. Florida Proc. 57: 36–39

    Google Scholar 

  • Shahack Gross, R., A. Shemesh, D. Yakir & S. Weiner, 1996. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction. Geochim. Cosmochim. Acta 60:3949–3953.

    Google Scholar 

  • Shemesh, A., L. H. Burckle & J. D. Hays, 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10: 179–196.

    Article  Google Scholar 

  • Shemesh, A., C. D. Charles & R. G. Fairbanks, 1992. Oxygen isotopes in biogenic silica: Global changes in ocean temperature and isotopic composition. Science 256: 1434–1436.

    Google Scholar 

  • Shemesh, A. & D. Peteet, 1998. Oxygen isotopes in fresh water biogenic opal: Northeastern US Allerød-Younger Dryas temperature shift. Geophys. Res. Lett. 25: 1935–1938.

    Article  Google Scholar 

  • Stoermer, E. F., J. A. Wolin & C. L. Schelske, 1993. Paleolimnological comparison of the Laurentian Great Lakes based on diatoms. Limnol. Oceanogr. 38: 1311–1316.

    Article  Google Scholar 

  • Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. Aquat. Sci. 47:1865–1874.

    Article  Google Scholar 

  • Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985a. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. Nat. Sci., Philadelphia 137: 106–118.

    Google Scholar 

  • Stoermer, E. F. & J. P. Smol (eds.), 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, 469 pp.

    Google Scholar 

  • Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. Variations in Melosira islandica valve morphology in Lake Ontariosediments related to eutrophication and silica depletion. Limnol. Oceanogr. 30: 414–418.

    Article  Google Scholar 

  • Tallberg, P., 1999. The magnitude of Si dissolution from diatoms at the sediment surface and its potential impact on P mobilization. Archiv. Hydrobiol. 144: 429–438.

    Google Scholar 

  • Tarapchak, S. J., D. R. Slavens, M. A. Quigley & J. S. Tarapchak, 1984. Silicon contamination in diatom nutrient enrichment experiments. Can. J. Fish. Aquat. Sci. 40: 657–664.

    Google Scholar 

  • Taylor, C. M., 1999. Recent changes in silica availability after implementation of phosphorus abatement in Lake Ontario. M. S. Thesis, University of Florida, Gainesville, FL, 60 pp.

    Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 1991. Changes in Mississippi River water quality this century. Implications for coastal food webs. BioScience 41: 140–147.

    Google Scholar 

  • Turner, R. E. & N. N. Rabalais, 1994. Coastal eutrophication near the Mississippi River delta. Nature 368: 619–621.

    Article  Google Scholar 

  • Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justic, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. Natl. Acad. Sci. USA 95: 13048–13051.

    Article  Google Scholar 

  • Verschuren, D. 1999. Influence of depth, mixing regime on sedimentation in a small, fluctuating tropical soda lake. Limnol. Oceanogr. 44: 1103–1113.

    Google Scholar 

  • Verschuren, D., D. N. Edgington, H. J. Kling & T. C. Johnson, 1998. Silica depletion in Lake Victoria: Sedimentary signals at offshore stations. J. Great Lakes Res. 24: 118–130.

    Article  Google Scholar 

  • Wessels, M., K. Mohaupt, R. Kummerlin & A. Lenhard, 1999. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance. Germany. J. Paleolim. 21: 171–192.

    Google Scholar 

  • Wilding, L. P., N. E. Smeck & L. R. Drees. 1977. Silica in soils: quartz, cristobalite, tridymite, and opal. In Minerals in Soil Environments. Soil Sci. Soc. Amer., Madison, pp. 471–552.

    Google Scholar 

  • Williams, D. F, J. Peck, E. B. Karabanov, A. A. Prodopenko, V. Kravchinsky, J. King & M. I. Kuzmin, 1997. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science 278: 1114–1117.

    Google Scholar 

  • Xiao, J., Y. Inouchi, H. Kumai, S. Yoshikawa, Y. Kondo, T. Liu & Z. An, 1997. Biogenic silica record in Lake Biwa of central Japan over the past 145,000 years. Quat. Res. 47: 277–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Conley, D.J., Schelske, C.L. (2002). Biogenic Silica. In: Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 3. Springer, Dordrecht. https://doi.org/10.1007/0-306-47668-1_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47668-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0681-4

  • Online ISBN: 978-0-306-47668-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics