Skip to main content

Nestling Digestive Physiology and Begging

  • Chapter
The Evolution of Begging

Abstract

As birds grow, increases in food intake rate are matched by increases in mass of the alimentary system and/or mass-specific enzyme activity. In overfed nestlings, digesta retention time seems to decline and food is digested less efficiently. These observations are consistent with the idea that digestive capacity limits food intake and thus growth. When this is so, successful information transfer between begging nestlings and parents reduces parental costs and increases family economy. Nestling begging signals and parental provisioning responses therefore represent a system with the potential to optimize nestling digestive efficiency. However, little is known about how begging signals reflect changes in food quality or increased nestling metabolic expenditures, and how parents might respond. Nestling digestion and the physiological mechanisms that control begging provide an important link between begging effort, nestling nutritional state and the information regarding offspring ‘need’ that parents have been selected to acquire from begging signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bart, J. & Tornes, A. 1989. Importance of monogamous male birds in determining reproductive success: evidence for house wrens and a review of male-removal studies. Behavioral Ecology and Sociobiology 24, 109–116.

    Article  Google Scholar 

  • Beauchamp, G., Ens, B.J. & Kacelnik, A. 1991. A dynamic model of allocation of food to nestlings. Behavioral Ecology 2, 21–37.

    Google Scholar 

  • Biviano, A.B., Del Rio, C.M. & Phillips, D.L. 1993. Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Gallus gallus) fed contrasting purified diets. Journal of Comparative Physiology B 163, 508–518.

    CAS  Google Scholar 

  • Blem, C.R. 1975. Energetics of nestling house sparrows Passer domesticus. Comparative Biochemistry and Physiology 52A, 305–312.

    Google Scholar 

  • Cant, J.P., McBride, B.W. & Croom, W.J. Jr. 1996. The regulation of intestinal metabolism and its impact on whole animal energetics. Journal of Animal Science 74, 2541–2553.

    PubMed  CAS  Google Scholar 

  • Caviedes-Vidal, E. & Karasov, W.H. 1996. Glucose and amino acid absorption in house sparrow intestine and its dietary modulation. American Journal of Physiology 271, R561–R568.

    PubMed  CAS  Google Scholar 

  • Caviedes-Vidal, E. & Karasov, W.H. 2001. Developmental changes in digestive physiology of nestling house sparrows, Passer domesticus. Physiological and Biochemical Zoology 74, 769–782.

    Article  PubMed  CAS  Google Scholar 

  • Cotton, P.A., Kacelnik, A. & Wright, J. 1996. Chick begging as a signal: are nestlings honest? Behavioral Ecology 7, 178–182.

    Google Scholar 

  • Cotton, P.A., Kacelnik, A. & Wright, J. 1999. Chick begging strategies in relation to brood hierarchies and hatching asynchrony. American Naturalist 153, 412–420.

    Google Scholar 

  • Escribano, F., Rahn, B.I. & Sell, J.L. 1988. Development of lipase activity in yolk membrane and pancreas of young turkeys. Poultry Science 67, 1089–1097.

    PubMed  CAS  Google Scholar 

  • Finke, M.A., Milinkovich, D.J. & Thompson, C.F. 1987. Evolution of clutch size: an experimental test in the house wren (Troglodytes aedon). Journal of Animal Ecology 56, 99–114.

    Google Scholar 

  • Gille, U., Salomon, F.-V. & Rönnert, J. 1999. Growth of the digestive organs in ducks with considerations on their growth in birds in general. British Poultry Science 40,194–202.

    PubMed  CAS  Google Scholar 

  • Godfray, H.C.J. 1991. Signalling of need by offspring to their parents. Nature 352, 328–330.

    Article  Google Scholar 

  • Gonzalez, E. & Vinardell, M.P. 1996. Ontogenetic development of proline intestinal transport in the domestic fowl. British Poultry Science 37, 383–394.

    PubMed  CAS  Google Scholar 

  • Houston, A.I. & Davies, D.B. 1985. The evolution of cooperation and life history in the dunnock, Prunella modularis. In: Behavioural Ecology: Ecological Consequences of Adaptive Behaviour (Ed. by R.M. Sibly & R. Smith). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Jackson, S. & Diamond, J. 1995. Ontogenetic development of gut function,growth, and metabolism in a wild bird, the Red Jungle Fowl. American Journal of Physiology 269, R1163–R1173.

    PubMed  CAS  Google Scholar 

  • Jackson, S. & Diamond, J. 1996. Metabolic and digestive responses to artificial selection in chickens. Evolution 50, 1638–1650.

    Google Scholar 

  • Jumars, P. A. & Martinez del Rio, C. 1999. The tau of continuous feeding on simple foods. Physiological and Biochemical Zoology 72, 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Kacelnik, A. & Cuthill, I. 1990. Central place foraging in starlings (Sturnus vulgaris). II. Food allocation to chicks. Journal of Animal Ecology 59, 655–674.

    Google Scholar 

  • Kacelnik, A., Cotton, P.A., Stirling, L. & Wright, J. 1995. Food allocation among nestling starlings: sibling competition and the scope of parental choice. Proceedings of the Royal Society of London, Series B 259, 259–263.

    Google Scholar 

  • Karasov, W.H. 1990. Digestion in birds: chemical and physiological determinants and ecological implications. Studies in Avian Biology 13, 391–415.

    Google Scholar 

  • Karasov, W.H. 1996. Digestive plasticity in avian energetics and feeding ecology. In: Avian Energetics and Nutritional Ecology (Ed. by C. Carey). New York: Chapman and Hall.

    Google Scholar 

  • Kilner, R. 1995. When do canary parents respond to nestling signals of need? Proceedings of the Royal Society of London, Series B 260, 343–348.

    Google Scholar 

  • King, D.E., Asem, E.K. & Adeola, O. 2000. Ontogenetic development of intestinal digestive functions in white Pekin ducks. Journal of Nutrition 130, 57–62.

    PubMed  CAS  Google Scholar 

  • Kirkwood, J.K. & Prescott, N.J. 1984. Growth rate and pattern of gut development in mammals and birds. Livestock Production Science 11, 461–474.

    Article  Google Scholar 

  • Konarzewski, M. & Starck, J.M. 2000. Effects of food shortage and oversupply on energy utilization, histology, and function of the gut in nestling song thrushes (Turdus philomelos). Physiological and Biochemical Zoology 73, 416–427.

    PubMed  CAS  Google Scholar 

  • Konarzewski, M., Kozlowski, J. & Ziolko, M. 1989. Optimal allocation of energy to growth of the alimentary tract in birds. Functional Ecology 3, 589–596.

    Google Scholar 

  • Konarzewski, M., Lilja, C., Kozlowski, J. & Lewonczuk, B. 1990. On the optimal growth of the alimentary tract in avian postembryonic development. Journal of Zoology 222, 89–101.

    Article  Google Scholar 

  • Konarzewski, M., Koyama, S., Swierubska, T. & Lewonczuk, B. 1996. Effect of short-term feed restriction, realimentation and overfeeding on growth of Song Thrush (Turdus philomelos) nestlings. Functional Ecology 10, 97–105.

    Google Scholar 

  • Krogdahl, A. & Sell, J.L. 1989. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Science 68, 1561–1568.

    PubMed  CAS  Google Scholar 

  • Lepczyk, C.A. & Karasov, W.H. 2000. The effect of ephemeral food restrictions on the growth of house sparrows (Passer domesticus). The Auk 117, 164–174.

    Google Scholar 

  • Lepczyk, C.A., Caviedes-Vidal, E. & Karasov, W.H. 1998. Digestive responses during food restriction and realimentation in nestling house sparrows (Passer domesticus). Physiological Zoology 71, 561–573.

    PubMed  CAS  Google Scholar 

  • Levey, D.J. & Karasov, W.H. 1992. Digestive modulation in a seasonal frugivore, the American robin (Turdus migratorius). American Journal of Physiology 262, G711–G718.

    PubMed  CAS  Google Scholar 

  • Levey, D.J. & Martinez del Rio, C. 1999. Test, rejection, and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird. Physiological and Biochemical Zoology 72, 369–383.

    PubMed  CAS  Google Scholar 

  • Lilja, C. 1983. A comparative study of postnatal growth and organ development in some species of birds. Growth 47, 317–339.

    PubMed  CAS  Google Scholar 

  • Lilja, C. 1997. On the pattern of organ growth in the common tern (Sterna hirundo). Growth, Development & Aging 61, 11–18.

    CAS  Google Scholar 

  • Lilja, C., Sperber, I. & Marks, H.L. 1985. Postnatal growth and organ development in Japanese quail selected for high growth rate. Growth 49, 51–62.

    PubMed  CAS  Google Scholar 

  • Lotem, A. 1998a. High levels of begging behaviour by small nestlings: a case of a negatively correlated handicap. Israel Journal of Zoology 44, 29–45.

    Google Scholar 

  • Lotem, A. 1998b. Differences in begging behaviour between barn swallow, Hirundo rustica, nestlings. Animal Behaviour 55, 809–818.

    Article  PubMed  Google Scholar 

  • Magrath, R.D.1991. Nestling weight and juvenile survival in the blackbird, Turdus merula. Journal of Animal Ecology 60, 335–351.

    Google Scholar 

  • Markman, S., Yom-Tov, Y. & Wright, J. 1996. The effect of male removal on female parental care in the orange-tufted sunbird. Animal Behaviour 52, 437–444.

    Article  Google Scholar 

  • Martin, T.E. 1987. Food as a limit on breeding birds: a life-history perspective. Annual Review of Ecology and Systematics 18, 453–487.

    Article  Google Scholar 

  • Moreto, M., Amat, C., Puchal, A., Buddington, R.K. & Planas, J.M. 1991. Transport of L-proline and alpha-methyl-D-glucoside by chicken proximal cecum during development. American Journal of Physiology 260, G457–G463.

    PubMed  CAS  Google Scholar 

  • Neff, M. 1973. Untersuchungen über das embryonale und postembryonale organwachstum bei vogelarten mit verschiedenem ontogenesemodus. Revue Suisse de Zoologie 79, 1471–1597.

    Google Scholar 

  • Nir, I. & Nitsan, Z. 1979. Metabolic and anatomical adaptations of light-bodied chicks to intermittent feeding. British Poultry Science 20, 61–71.

    CAS  Google Scholar 

  • Nir, I., Nitsan, Z., Dror, Y. & Shapira, N. 1978. Influence of overfeeding on growth, obesity and intestinal tract in young chicks of light and heavy breeds. British Journal of Nutrition 39, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Obst, B.S. & Diamond, J.M. 1989. Interspecific variation in sugar and amino acid transport by the avian cecum. Journal of Experimental Zoology Supplement 3, 117–126.

    CAS  Google Scholar 

  • Obst, B.S. & Diamond, J.M. 1992. Ontogenesis of intestinal nutrient transport in domestic chickens (Gallus gallus) and its relation to growth. The Auk 109, 451–464.

    Google Scholar 

  • O’Connor, R. 1984. The Growth and Development of Birds. Chichester: John Wiley & Sons.

    Google Scholar 

  • Penry, D.L. & Jumars, P.A. 1987. Modeling animal guts as chemical reactors. American Naturalist 129, 69–96.

    Article  CAS  Google Scholar 

  • Planas, J.M., Villa, M.C., Ferrer, R. & Moreto, M. 1986. Hexose transport by chicken cecum during development. Pfluegers Archiv European Journal of Physiology 407, 216–220.

    CAS  Google Scholar 

  • Portmann, A. 1942. Die ontogenese und das problem der morphologischen entwicklungszustände von verschiedener wertigkeit bei vögeln und säugern. Revue Suisse de Zoologie 49,169–185.

    Google Scholar 

  • Price, K., Harvey, H. & Ydenberg, R. 1996. Begging tactics of nestling yellow-headed blackbirds, Xanthocephalus xanthocephalus, in relation to need. Animal Behaviour 51, 421–425.

    Article  Google Scholar 

  • Ricklefs, R.E. 1979. Adaptation, constraint, and compromise in avian postnatal development. Biological Reviews 54, 269–290.

    PubMed  CAS  Google Scholar 

  • Ricklefs, R.E. 1987. Response of adult Leach’s storm-petrels to increased food demand at the nest. The Auk 104, 750–756.

    Google Scholar 

  • Ricklefs, R.E., Starck, J.M. & Konarzewski, M. 1998. Internal constraints on growth in birds. In: Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum (Ed. by J.M. Starck & R.E. Ricklefs). New York: Oxford University Press.

    Google Scholar 

  • Schreiber, E.A. 1996. Experimental manipulation of feeding in red-tailed tropicbird chicks. Colonial Waterbirds 19, 45–55.

    Google Scholar 

  • Sell, J.L., Krogdahl, A. & Hanyu, N. 1986. Influence of age on utilization of supplemental fats by young turkeys. Poultry Science 65, 546–554.

    PubMed  CAS  Google Scholar 

  • Sell, J.L., Koldovsky, O. & Reid, B.L. 1989. Intestinal disaccharidases of young turkeys: temporal development and influence of diet composition. Poultry Science 68, 265–277.

    PubMed  CAS  Google Scholar 

  • Starck, J.M. 1996. Intestinal growth in the altricial European starling (Sturnus vulgaris) and the precocial Japanese quail (Coturnix coturnix japonica). A morphometric and cytokinetic study. Acta Anatomica (Basel) 156, 289–306.

    CAS  Google Scholar 

  • Starck, J.M. 1998. Structural variants and invariants in avian embryonic and postnatal development. In: Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum (Ed. by J.M. Starck & R.E. Ricklefs). New York: Oxford University Press.

    Google Scholar 

  • Starck, J.M. & Ricklefs, R.E. 1998. Avian Growth and Development: Evolution Within the Altricial-Precocial Spectrum. New York: Oxford University Press.

    Google Scholar 

  • Starck, J.M., Karasov, W.H. & Afik, D. 2000. Intestinal nutrient uptake measurements and tissue damage: Validating the everted sleeves method. Physiological and Biochemical Zoology 73, 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Weathers, W.W. 1996. Energetics of postnatal growth. In: Avian Energetics and Nutritional Ecology (Ed. by C. Carey). New York: Chapman and Hall.

    Google Scholar 

  • Winkler, D.W. & Adler, F.R. 1996. Dynamic state variable models for parental care. I. A submodel for the growth of the chicks of passerine birds. Journal of Avian Biology 27, 343–353.

    Google Scholar 

  • Wolf, L., Ketterson, E.D. & Nolan, V. Jr. 1988. Behavioural response of female dark-eyed juncos to the experimental removal of their mates: implications for the evolution of male parental care. Animal Behaviour 39, 125–134.

    Google Scholar 

  • Wright, J. & Cuthill, I. 1989. Manipulation of sex differences in parental care. Behavioral Ecology and Sociobiology 25, 171–181.

    Article  Google Scholar 

  • Wright, J. & Cuthill, I. 1990. Biparental care: short-term manipulations of partner contribution and brood size in the starling, Sturnus vulgaris. Behavioral Ecology 1, 116–124.

    Google Scholar 

  • Wright, J., Both, C., Cotton, P.A. & Bryant, D. 1998. Quality versus quantity: energetic and nutritional trade-offs in parental provisioning strategies. Journal of Animal Ecology 67, 620–634.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Karasov, W.H., Wright, J. (2002). Nestling Digestive Physiology and Begging. In: Wright, J., Leonard, M.L. (eds) The Evolution of Begging. Springer, Dordrecht. https://doi.org/10.1007/0-306-47660-6_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-47660-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0571-8

  • Online ISBN: 978-0-306-47660-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics