Skip to main content

Investigating Correlates of Mathematics and Science Literacy in the Final Year of Secondary School

  • Chapter
Secondary Analysis of the TIMSS Data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apple, M. (1993). Official knowledge: Democratic education in a conservative age. London: Routlege.

    Google Scholar 

  • Australian Education Council (1991). A national statement on mathematics for Australian schools. Carlton, Victoria: Curriculum Corporation.

    Google Scholar 

  • Bourdieu, P. (1986). The forms of capital. In J. G. Richardson (Ed.), Handbook of theory and research for the sociology of education. New York: Greenwood Press.

    Google Scholar 

  • Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Parks, CA: Sage Publications.

    Google Scholar 

  • Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, N.H.: Heinemann Publishing.

    Google Scholar 

  • Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94 (Supplement), S95–S120.

    Article  Google Scholar 

  • Ferdman, B. (1990). Literacy and cultural identity. Harvard Educational Review, 60(2), 181–204.

    Google Scholar 

  • Ghelfi, L. M., & Parker, T. S. (1997). A county-level measure of urban influence (Staff Paper No. 9702). Washington, DC: U. S. Department of Agriculture.

    Google Scholar 

  • Gonzalez, E. J., Smith, T. A., & Sibberns, H. (1998). User guide for the TIMSS international database: Finalyear of secondary school. Chestnut Hill, MA: TIMSS International Study Center.

    Google Scholar 

  • Koballa, T., Kemp, A., & Evans, R. (1997). The spectrum of scientific literacy. Science Teacher, 64(7), 27–31.

    Google Scholar 

  • Lee, O. (1997). Scientific literacy for all: What is it, and how can we achieve it? Journal of Research in Science Teaching, 34, 210–222.

    Article  Google Scholar 

  • Martin, M. O., Mullis, I. V. S., Gonzalez, E., J., Smith, T., & Kelly, D. L. (1999). School contexts for learning and instruction: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College.

    Google Scholar 

  • Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1998). Mathematics and science achievement in the finalyear of secondary school: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Boston College.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • National Research Council. (1989). Everybody counts: A report to the nation on the future of mathematics education. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.

    Google Scholar 

  • New Zealand Ministry of Education. (1992). Mathematics in the New Zealand curriculum. Wellington: Learning Media.

    Google Scholar 

  • Orpwood, G., & Garden, R. A. (1998). Assessing mathematics and science literacy. [TIMSS Monograph No. 4]. Vancouver, CA: Pacific Educational Press.

    Google Scholar 

  • Pollack, V. L. (1994). Science education. II: Scientific literacy and the Karplus taxonomy. Journal of Science Education and Technology, 3, 89–97.

    Google Scholar 

  • Pool, R. (1990). Science literacy: The enemy in us. Science, 251, 266–267.

    Google Scholar 

  • Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., & Congdon, R. (2000). HLM 5: Hierarchical linear and nonlinear modeling. Chicago, IL: Scientific Software International.

    Google Scholar 

  • Reynolds, A. J., & Walberg, H. J. (1992). A structural model of high school mathematics outcomes. Journal of Educational Research, 85(3), 150–158.

    Article  Google Scholar 

  • Reynolds, A. J., & Walberg, H. J. (1991). A structural model of science achievement. Journal of Educational Psychology, 83(1), 97–107.

    Article  Google Scholar 

  • Schmidt, W. H., McKnight, C. C., Cogan, L. S., Jakwerth, P. M., & Houang, R. T. (1999). Facing the consequences: Using TIMSS for a closer look at US mathematics and science education. Boston, MA Kluwer Academic Publishers.

    Google Scholar 

  • Schmidt, W. H., Wolfe, R. G., & Kifer, E. (1992). The identification and description of student growth in mathematics achievement. In L. Burstein (Ed.), The IEA study of mathematics III: Student growth and classroom process. New York: Pergamon Press.

    Google Scholar 

  • Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University.

    Google Scholar 

  • Steen, L. A. (Ed.). (1997). Why numbers count: Quantitative literacy for tomorrow’s America. New York: College Entrance Examination Board.

    Google Scholar 

  • TIMSS International Study Center. (1998). TIMSS released item set for the final year of secondary school. Chestnut Hill, MA: Boston College.

    Google Scholar 

  • Tsai, S. L., & Walberg, H. J. (1983). Math achievement and attitude productivity in junior high school. Journal of Educational Research, 76(5), 267–272.

    Google Scholar 

  • Walberg, H. J. (1981). A psychological theory of educational productivity. In F. H. Farley & N. J. Gordon (Eds.), Psychology and education. Chicago: National Society for the Study of Education.

    Google Scholar 

  • Walberg, H. J. (1984). Improving the productivity of America’s schools. Educational Leadership, May, 19–27.

    Google Scholar 

  • Walberg, H. J. (1992). The knowledge base for educational productivity. International Journal of Educational Reform, 1(1), 5–15.

    Google Scholar 

  • Wilkins, J. L. M. (1999). Demographic opportunities and school achievement. Journal of Research in Education, 9(1), 12–19.

    Google Scholar 

  • Wilkins, J. L. M. (2000). Preparing for the 21st century: The status of quantitative literacy in the United States. School Science and Mathematics, 100(8), 405–418.

    Article  Google Scholar 

  • Willms, J. D. (1992). Monitoring school performance: A guide for educators. London: Falmer.

    Google Scholar 

  • Young, D. J., Reynolds, A. J., & Walberg, H. J. (1996). Science achievement and educational productivity: A hierarchical linear model. Journal of Educational Research, 89(5), 272–278.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wilkins, J.L.M., Zembylas, M., Travers, K.J. (2002). Investigating Correlates of Mathematics and Science Literacy in the Final Year of Secondary School. In: Robitaille, D.F., Beaton, A.E. (eds) Secondary Analysis of the TIMSS Data. Springer, Dordrecht. https://doi.org/10.1007/0-306-47642-8_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47642-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0859-7

  • Online ISBN: 978-0-306-47642-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics