Skip to main content

Part of the book series: Developments in Plant Pathology ((DIPP,volume 14))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Rahim, M.F., Satour. M.M., Mickail, K.Y., El-Eraki, S.A., Grinstein, A., Chen. Y. and Katan, J. (1987) Effectiveness of soil solarization in furrow-inigated Egyptian soils. Plant Disease 72, 143–146.

    Google Scholar 

  • Antoniou, P.P., Tjamos, E.C., Andreou, M.T. and Panagopoulos, C.G. (1995a) Effectiveness, modes of action and commercial application of soil solarization for control of Clavibacter michiganensis ssp. michiganensis of tomatoes, Acta Horticulturae 382, 119–124.

    Google Scholar 

  • Antoniou, P.P., Tjamos, E.C. and Panagopoulos, C.G. (1995b) Use of soil solarization for controlling bacterial canker of tomato in plastic houses in Greece, Plant Pathology 44, 438–447.

    Google Scholar 

  • Antoniou, P.P., Tjamos, E.C. and Panagopoulos, C.G. (1996) Sensitivity of propagules of Fusarium oxysporum f.sp. cucumerinum, Verticillium dahliae, Clavibacter michiganensis ssp. michiganensis to reduced doses methyl bromide fumigation in combination with impermeable plastics, Phytopathologia Mediterranea (abs.).

    Google Scholar 

  • Antoniou, P.P., Tjamos, E.C. and Panagopoulos, C.G. (1997) Reduced doses of methyl bromide, impermeable plastics and solarization against Fusarium oxysporum f. sp. cucumerinum of cucumbers and Clavibacter michiganensis ssp. michiganensis of tomatoes, Proceedings of the 10th Congress of the Mediterranean Phytopathological Union, Montpellier, France, 1–5 June 1997, pp. 653–655.

    Google Scholar 

  • Ben-Yephet, Y. (1988) Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham-sodium, methyl bromide and soil solarization. Crop Protection 7, 25–27.

    CAS  Google Scholar 

  • Bollen, G.J. (1985) Lethal temperatures of soil fungi, in C.A. Parker, A.D. Rovira, K.J. Moore and P.T.W. Wong (eds.), Ecology and Management of Soilborne Plant Pathogens, APS Press, St Paul, Fla., pp. 191–193.

    Google Scholar 

  • Cartia, G. (1989) La solarizzazione del terreno: Esperienze maturate in Sicilia. [Soil solarization: Experiments in Sicily], Informatore Fitopatologico 39, 49–52.

    Google Scholar 

  • Dawson, J.R. and Johnson, R.A.H. (1965) Influence of steam air-mixtures, when used for heating soil, on biological and chemical properties that effect seedling growth, Annals of Applied Biology 56, 243–247.

    CAS  Google Scholar 

  • DeVay, J.E. and Katan, J. (1991) Mechanisms of pathogen control in solarized soils, in J. Katan and J.E. DeVay (eds.), Soil Solarization, CRC Publications, Boca Raton, Fla., pp. 87–102.

    Google Scholar 

  • Freeman, S. and Katan, J. (1988) Weakening effect on propagules of Fusarium by sublethal heating, Phytopathology 78, 1656–1661.

    Google Scholar 

  • Gamliel, A., Grinstein, A., Eshel, D., Di Primo, P. and Katan, J. (1997a) Combining solarization and fumigants at reduced dosages for effective control of soilborne pathogens: Controlled environment study I, Phytoparasitica 25, 252–253.

    Google Scholar 

  • Gamliel, A., Grinstein, A. and Katan, J. (1997b) Improved technologies to reduce emissions of methyl bromide from soil fumigation, in A. Grinstein, K.R.S. Ascher, G. Mathews, J. Katan, and A. Gamliel (eds.). Improved Application Technology for Reduction of Pesticide Dosage and Environmental Pollution, Phytoparasitica 25S, 21–30

    Google Scholar 

  • Gamliel, A., Grinstein, A., Peretz, Y., Klein, L., Nachmias, A., Tzror, L. and Katan, J. (1997c) Reduced dosage of methyl bromide for controlling Verticillium wilt of potato in experimental and commercial plots. Plant Disease 81, 469–474

    CAS  Google Scholar 

  • Gamliel, A. and Katan, J. (1991) Involvement of fluorescent Pseudomonas and other micro-organisms in increased growth response of plants in solarized soils. Phytopathology 81, 494–502.

    Google Scholar 

  • Gamliel, A. and Stapleton, J.J. (1997) Improved soil disinfestation by biotoxic volatile compounds generated from solarized, organic amended soil, in A. Grinstein, K.R.S. Ascher, G. Mathews, J. Katan and A. Gamliel (eds.). Improved Application Technology for Reduction of Pesticide Dosage and Environmental Pollution. Phytoparasitica 25S, 31–38.

    Google Scholar 

  • Garibaldi, A. and Gullino, M.L. (1991) Soil solarization in southern European countries, with emphasis on soilborne disease control of protected crops, in J. Katan and J.E. DeVay (eds.), Soil Solarization, CRC Publications. Boca Raton. Fla., pp. 228–235.

    Google Scholar 

  • Garibaldi, A., Gullino, M.L. and Minuto, G. (1997) Diseases of basil and their control. Plant Disease 81, 124–131.

    Google Scholar 

  • Garibaldi, A. and Tamietti, G. (1984) Attempts to use soil solarization in closed glass houses in northern Italy for controlling corky root of tomato, Acta Horticulturae 152, 237–243.

    Google Scholar 

  • Greenberger, A., Yogev, A. and Katan, J. (1987) Induced suppressiveness in solarized soils, Phytopathology 77, 1663–1667.

    Google Scholar 

  • Grinstein, A. and Ausher, R. (1991) The utilization of soil solarization in Israel, in J. Katan and J.E. DeVay (eds.). Soil Solarization, CRC Publications, Boca Raton, Fla., pp. 193–204.

    Google Scholar 

  • Grinstein, A. and Hetzroni, A. (1991) The technology of soil solarization, in J. Katan and J.E DeVay (eds.) Soil Solarization, CRC Publications, Boca Raton, Fla., pp. 159–170.

    Google Scholar 

  • Grinstein, A., Katan, J., Abdul-Razik, A., Zeidan, O. and Elad, Y. (1979) Control of Sclerotium rolfsii and weeds in peanuts by solar healing of the soil. Plant Disease Reporter 63, 991–994.

    Google Scholar 

  • Grinstein, A., Kritzman, G., Hetzroni, A., Gamliel, A., Mor, M. and Katan, J. (1995) The border effect of soil solarization. Crop Protection 14, 315–320.

    Article  Google Scholar 

  • Hilderbrand, D.M. (1985) Soil solar heating for control of damping-off fungi and weeds at the Colorado State Forest Service Nursery, Tree Planters’ Notes 36, 28–34.

    Google Scholar 

  • Kaewmang, W., Sivasithamparam, K. and Hardy, G.E. (1989) Use of soil solarization to control root rots in gerberas (Gerbera jamesonii), Biology and Fertility of Soils 8, 38–47.

    Google Scholar 

  • Katan, J., Greenberger, A., Alon, H. and Grinstein, A. (1976) Solar heating by polyethylene mulching for control of diseases caused by soilbome pathogens. Phytopathology 66, 683–688

    Article  Google Scholar 

  • Katan, J., Grinstein. A., Greenberger, A., Yarden, O. and DeVay, J.E. (1987) First decade (1976–1986) of soil solarization (solar heating)-A chronological bibliography, Phytoparasitica 15, 229–255.

    Google Scholar 

  • Klein, L. (1996) Methyl bromide as a soil fumigant, in C.H. Bell. N. Price and B. Chakrabarti (eds.), The Methyl Bromide Issue, John Wiley and Sons Ltd, Chichester, pp. 191–235.

    Google Scholar 

  • Kodama, T. and Fukui, T. (1982) Solar heating in closed plastic house for control of soilbome diseases. V. Application for control of Fusarium wilt of strawberry. Annals of the Phytopathological Society of Japan 48, 570–577.

    Google Scholar 

  • Kodama, T., Fukui, T. and Matsumoto, Y. (1980) Soil sterilization by solar heating against soil-borne diseases in a closed vinyl house. III. Influence of the treatment on the population level of soil microfiora and the behaviour of strawberry yellows pathogen, Fusarium oxysporum f.sp. fragariae, Bulletin of the Nara Agricultural Experiment Station 11, 41–52.

    Google Scholar 

  • Kritzman, G. and Ben-Yephet, Y. (1990) Disease exchange in onions as influenced by metham-sodium, Hassadeh 1, 26–29.

    Google Scholar 

  • Malathrakis, N.E., Kapetanakis, G.E. and Linardakis, D.C. (1983) Brown root rot of tomato and its control in Crete. Annals of Applied Biology 102, 251–256.

    CAS  Google Scholar 

  • Martyn, R.D. and Hartz, T.K. (1986) Use of soil solarization to control Fusarium wilt of watermelon. Plant Disease 70, 762–766.

    Google Scholar 

  • Materrazzi, A., Triolo, E., Vannacci, G. and Scaramuzzi, G. (1987) The use of soil solar heating for controlling neck rot of greenhouse lettuce, Colture Protette 16, 51–54.

    Google Scholar 

  • Middleton, L.A. and Lawrence, N.J. (1995) The use of dazomet via the “planting through” technique in horticultural crops, Acta Horticulturae 382, 86–103.

    Google Scholar 

  • Oliveira, H. (1992) Evaluation of soil solarization for the control of Fusarium wilt of tomato, in E.C. Tjamos, G.C. Papavizas. and R.J. Cook (eds.). Biological Control of Plant Diseases. Progress and Challenges for the Future, NATO ASI Series A, Life Sciences, 230, Plenum Press, New York, pp. 69–73.

    Google Scholar 

  • Phillips, A.J.L. (1990) The effects of soil solarization on sclerotial populations of Sclerotinia sclerotiorum. Plant Pathology 39, 38–43.

    Google Scholar 

  • Porter, I.J. and Merriman, P.R. (1985) Evaluation of soil solarization for control of root diseases of row crop in Victoria, Plant Pathology 34, 108–118.

    Google Scholar 

  • Ristaino, J.B., Perry, K.B. and Lumsden. R.D. (1991) Effect of solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microbiota and incidence of southern blight of tomato, Phytopathology 81, 1117–1124.

    Google Scholar 

  • Ristaino, J.B. and Thomas, W. (1997) Agricultural MBr, and the ozone hole: Can we fill the gaps? Plant Disease 81, 964–977.

    Google Scholar 

  • Rubin, B. and Benjamin, A. (1983) Solar heating of the soil: Effect on soil incorporated herbicides and on weed control. Weed Science 31, 819–825.

    Google Scholar 

  • Runia, W.Th. (1983) A recent developments in steam sterilization, Acta Horticulturae 152, 195–200.

    Google Scholar 

  • Stapleton, J.J. and DeVay, J.E. (1982) Effect of soil solarization on populations of selected soilbome microorganisms and growth of deciduous fruit tree seedlings, Phytopathology 72, 323–326.

    Google Scholar 

  • Stapleton, J.J. and DeVay, J.E. (1984) Thermal components of soil solarization as related to changes in soil and root microflora and increased plant growth response. Phytopathology 74, 255–259.

    Article  Google Scholar 

  • Stapleton, J.J. and Garza-Lopez, J.G. (1988) Mulching of soil with transparent (solarization) and black polyethylene films to increase growth of annual and perennial crops in Southern Mexico, Tropical Agriculture 65, 29–35.

    Google Scholar 

  • Tamietti, G. and Garibaldi, A. (1989) The use of solarization against Rhizoctonia under greenhouse conditions in Liguria, Informatore Fitopatologico 39, 43–45

    Google Scholar 

  • Tjamos, E.G. (1984) Control of Pyrenochaeta lycopersici by combined soil solarization and low dose of methyl bromide in Greece, Acta Horticulturae 52, 253–258.

    Google Scholar 

  • Tjamos, E.C., Bins, D.A. and Paplomatas, EJ. (1991) Recovery of Verticillium wilted olive trees after individual application of soil solarization in established olive orchards, Plant Disease 75, 557–562.

    Article  Google Scholar 

  • Tjamos, E.C., Karapappas, V. and Bardas, D. (1989) Low cost application of soil solarization in covered plastic houses for the control of Verticillium wilt of tomatoes in Greece, Acta Horticulturae 255, 139–149.

    Google Scholar 

  • Tjamos, E.C. and Malcrynakis, N. (1990) Control of fungal wilt diseases of melon by application of soil solarization in the field, Proceedings of the 8th Congress of the Mediterranean Phytopathological Union, Agadir, Morocco, November 1990. pp. 423–425.

    Google Scholar 

  • Tjamos, E.C. and Paplomatas, EJ. (1987) Effect of soil solarization on the survival of fungal antagonists of Verticillium dahliae, European Mediterranean Plant Protection Organization Bulletin 17, 645–653.

    Google Scholar 

  • Triolo, E, Vannacci, G. and Materazzi, A. (1988) Solar heating of the soil in vegetable production. Part 2. Studies of possible mechanisms of the effect, Colture Prottete 17, 59–62.

    Google Scholar 

  • van Sleekelenburg, N. (1996) Physical control, in J.C. van Lenteren (ed.). Integrated Pest Management in Protected Cultivation, Wageningen Agricultural University, Wageningen, pp. 17–20.

    Google Scholar 

  • Vannacci, G., Triolo E. and Materazzi, A. (1988) Survival of Sclerotinia minor sclerotia in solarized soil, Plant Soil 109, 49–55.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tjamos, E.C., Grinstein, A., Gamliel, A. (1999). Disinfestation of Soil and Growth Media. In: Albajes, R., Lodovica Gullino, M., van Lenteren, J.C., Elad, Y. (eds) Integrated Pest and Disease Management in Greenhouse Crops. Developments in Plant Pathology, vol 14. Springer, Dordrecht. https://doi.org/10.1007/0-306-47585-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-47585-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5631-8

  • Online ISBN: 978-0-306-47585-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics