Skip to main content

Convexity Conditions for Rotationally Invariant Functions in Two Dimensions

  • Chapter
Applied Nonlinear Analysis

Abstract

Rotationally invariant functions can be represented as functions of the (signed) singular values of their tensor arguments. In two dimensions, the paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of the rotationally invariant function in terms of its representation, with the emphasis on the functions invariant only with respect to the proper orthogonal group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G. (1995). Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elasticity, 39:31–46.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, G. and Tahraoui, R. (1980). Sur la faible fermeture de certains ensembles de contrainte en élasticité non-linéaire plane. C. R. Acad. Sci. Paris, 290:537–540.

    MathSciNet  MATH  Google Scholar 

  3. Ball, J.M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63:337–403.

    MATH  Google Scholar 

  4. Dacorogna, B. (1990). Direct methods in the calculus of variations. Berlin, Springer.

    Google Scholar 

  5. Dacorogna, B., Douchet, J., Gangbo, W. and Rappaz, J. (1990). Some examples of rank one convex functions in dimension two. Proc. Roy. Soc. Edinburgh, 114A:135–150.

    MathSciNet  Google Scholar 

  6. Dacorogna, B. and Koshigoe, H. (1993). On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse, 2:163–184.

    MathSciNet  MATH  Google Scholar 

  7. Knowles, J.K. and Sternberg, E. (1977). On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Rational Mech. Anal., 63:321–326.

    MathSciNet  MATH  Google Scholar 

  8. Rockafellar, R.T. (1970). Convex analysis. Princeton, Princeton University Press.

    MATH  Google Scholar 

  9. Rosakis, P. (1997). Characterization of convex isotropic functions. Preprint

    Google Scholar 

  10. Rosakis, P. and Simpson, H. (1995). On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. J. Elasticity, 37:113–137.

    Article  MathSciNet  MATH  Google Scholar 

  11. Šilhavy, M. (1997). The Mechanics and Thermodynamics of Continuous Media. Berlin, Springer.

    MATH  Google Scholar 

  12. Šilhaý, M. (1997). Convexity conditions for rotationally invariant functions in two dimensions. Preprint.

    Google Scholar 

  13. Šilhaý, M. (1998). On isotropic rank 1 convex functions. Preprint. Proc. Roy Soc. Edinburgh. To appear.

    Google Scholar 

  14. Šilhaý, M. Rank 1 perturbations of deformation gradients. Int. J. Solids Structures. To appear.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Šilhavý, M. (2002). Convexity Conditions for Rotationally Invariant Functions in Two Dimensions. In: Sequeira, A., da Veiga, H.B., Videman, J.H. (eds) Applied Nonlinear Analysis. Springer, Boston, MA. https://doi.org/10.1007/0-306-47096-9_35

Download citation

  • DOI: https://doi.org/10.1007/0-306-47096-9_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46303-7

  • Online ISBN: 978-0-306-47096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics