Skip to main content

Advances in Nuclear Fuel Management for Light Water Reactors

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science and Technology ((ANST,volume 26))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Kropaczek and P.J. Turinsky, In-core nuclear fuel management optimization for PWRs utilizing Simulated Annealing, Nucl. Technol. 95:9 (1991).

    Google Scholar 

  2. G.I. Maldonado and P.J. Turinsky, Application of non-linear nodal diffusion Generalized Perturbation Theory to nuclear fuel reload optimization, Nucl. Technol. 110:198 (1995).

    Google Scholar 

  3. R.K. Haling, Operational strategy for maintaining an optimum power distribution throughout life, Nuclear Performance of Power Reactor Cores, TID-7672, U.S. Atomic Energy Commission (1964).

    Google Scholar 

  4. S. Sun, D.J. Kropaczek and P.J. Turinsky, Haling principle: true or false?, Trans. Am. Nucl. Soc. 68: 482 (1993).

    Google Scholar 

  5. S.A. Comes and P.J. Turinsky, Out-of-core fuel cycle optimization for non-equilibrium cycles, Nucl. Technol. 83:31 (1988).

    Google Scholar 

  6. W.P. Gassmann, An improved low leakage method of Boiling Water Reactor core design and core management, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 16–37 (1997).

    Google Scholar 

  7. C. Vidal, PYROS, a front end for CASMO, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 2–35 (1997).

    Google Scholar 

  8. K. Adielson, Hot-Bird, a tool for automated optimization of fuel enrichment design, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 17–31 (1997).

    Google Scholar 

  9. K. Hida, Burnup shape optimization for BWR cores by enrichment and gadolinia zoning, Proc. Topl. Mtg. Advances in Reactor Physics, Knoxville, ANS, Vol. III, 233 (1994).

    Google Scholar 

  10. Y. Hirano, K. Hida, K. Sakurada, M. Yamamoto, Optimization of fuel rod enrichment distribution for BWR fuel element, Proc. Int. Conf. Reactor Physics PHYSOR96 — Breakthrough of Nuclear Energy by Reactor Physics, Mito, JAERI, B-45 (1996).

    Google Scholar 

  11. G.I. Maldonado and T. Guo, Penalty-based constraints applied to within-bundle loading optimization, Trans. Am. Nucl. Soc. 78:235 (1998).

    Google Scholar 

  12. G.I. Maldonado, T. Guo and P. Engrand, Dual-objective Simulated Annealing applied to within-lattice loading optimization, Trans. Am. Nucl. Soc. 78:236 (1998).

    Google Scholar 

  13. D. Belhaffaf, G. Mathonniere, S. Mengelle, A. Nicolas and M. Soldevila, Reference calculations performed with APOLLO-2, Proc. Topl. Mtg. Advances in Reactor Physics, Knoxville, ANS, Vol. II, 103 (1994).

    Google Scholar 

  14. R.L. Grow, M.L. Williams, D.B. Jones, J.R. Fisher, S.P. Baker and E.L. Fuller, CPM-3, improved lattice physics computer code, Proc. Topl. Mtg. Advances in Reactor Physics, Knoxville, ANS, Vol. I, 29 (1994).

    Google Scholar 

  15. M. Edenius, K. Ekberg, B.H. Forssen and D. Knott, CASMO-4: A Fuel Assembly Burnup Program, User’s Manual, SOA-95/1, Studsvik of America (1995).

    Google Scholar 

  16. J.J. Casal, R.J.J. Stammler, E.A. Villarino and A.A. Ferri, HELIOS: geometric capabilities of a new fuel-assembly program, Proc. Advances in Mathematics, Computations, and Reactor Physics, Pittsburgh, ANS, 10.2.1–1 (1991).

    Google Scholar 

  17. T.Q. Nguyen, K.C. Hoskins, M.M. Weber, S. Srinilta, E. Saji, R.K. Disney and C. Durston, Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores, WCAP-11596-P-A, Westinghouse Electric Corporation (1988).

    Google Scholar 

  18. M.J. Halsall, WIMS7, an overview, Proc. Int. Conf Reactor Physics PHYSOR96 — Breakthrough of Nuclear Energy by Reactor Physics, Mito, JAEIU, B-1 (1996).

    Google Scholar 

  19. E. Fuentes and P.J. Turinsky, Consistent fidelity comparison of integral transport methods, Trans. Am. Nucl. Soc. 71:270 (1994).

    Google Scholar 

  20. M. J. Halsall, CACTUS, A Characteristics Solution to the Neutron Transport Equation in Complicated Geometries, AEEW-R 1291, AEEW (1980).

    Google Scholar 

  21. D.E. Cullen, Nuclear cross section preparation, in: Handbook of Nuclear Reactors Calculations, Y. Ronen, ed., CRC Press, Boca Raton (1986).

    Google Scholar 

  22. K. Koebke, A new approach to homogenization and group condensation, Proc. Specialists’ Mtg. Homogenization Methods in Reactor Physics, Lugano, IAEA, 303 (1978).

    Google Scholar 

  23. K.S. Smith, Spatial Homogenization Methods for Light Water Reactor Analysis, PhD Thesis, Massachusetts Institute of Technology (1980).

    Google Scholar 

  24. M.J. Driscoll, T.J. Downar and E.E. Pilat, The Linear Reactivity Model for Nuclear Fuel Management, ANS, La Grange Park (1990).

    Google Scholar 

  25. D.L. Delp, D.L. Fisher, J.M. Harriman and M.J. Stedwell, FLARE — A Three-Dimensional Boiling Water Reactor Simulator, GEAP-4598, General Electric Co. (1964).

    Google Scholar 

  26. C.L. Beard Jr., An Improved Long Range Fuel Management Program, MSc Thesis, Massachusetts Institute of Technology (1978).

    Google Scholar 

  27. R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equations, Prog. Nucl. Energy 17:271 (1986).

    Article  Google Scholar 

  28. R. Boer, R. Bohm, H. Finnemann and R. Muller, The coupled neutronics and thermal-hydraulics code system PANBOX for PWR safety analysis, Kerntechnik 57:49 (1992).

    Google Scholar 

  29. J.T. Cronin, K.S. Smith and D.M. ver Planck, SIMULATE-3 Methodology, SOA-95/18, Studsvik of America (1995).

    Google Scholar 

  30. Y.A. Chao and Y.A. Shatilla, The theory of ANC-H: a hexagonal nodal diffusion code using conformal mapping, Proc. Topl. Mtg. Advances in Reactor Physics, Knoxville, ANS, Vol. II, 324 (1994).

    Google Scholar 

  31. G.H. Hobson and R.C. Aigle, Nodal code developments at FRAMATOME/BWFC, Proc. Topl. Mtg. Advances in Reactor Physics, Knoxville, ANS, Vol. 1, 2 (1994).

    Google Scholar 

  32. P.K. Hutt, N. Gaines, M.J. Halsall, M. McEllin and R.J. White, The UK core performance code package, Nucl. Energy 30:291 (1991).

    Google Scholar 

  33. H. Moon, B. Burdick and D.H. Timmons, Recent improvements in MICROBURN-B Boiling Water Reactor simulation method, Proc. Int. Conf. Mathematics and Computations, Reactor Physics, and Environmental Analyses, Portland, ANS, 39 (1995).

    Google Scholar 

  34. P.J. Turinsky, R.M.K. Al-Chalabi, P. Engrand, H.N. Sarsour, F.X. Faure and W. Guo, NESTLE: A Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady State and Transient Problems, EGG-NRE-11406, INEL (1994).

    Google Scholar 

  35. J.M. Noh and N.Z. Cho, A new diffusion nodal method based upon analytic basis function expansion, Nucl. Sci. Eng. 116:165 (1994).

    Google Scholar 

  36. K.R. Rempe, K.S. Smith and A.F. Henry, SIMULATE-3 pin power reconstruction: methodology and benchmarking, ucl. Sci. Eng. 103:334 (1989).

    Google Scholar 

  37. H.G. Joo and T. Downar, An incomplete domain decomposition preconditioning method for nonlinear nodal kinetics calculations, Nucl. Sci. Eng. 123:403 (1996).

    Google Scholar 

  38. R.M. Al-Chalabi and P.J. Turinsky, Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem, Proc. Conf. Iterative Methods, Copper Mountain, SIAM, Vol. II, Session I, Paper 1 (1996).

    Google Scholar 

  39. H. Noda, A. Yamamoto, Y. Nagasawa, H. Murao and S. Kitamura, Core burnup calculations using neural networks, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 20–39 (1997).

    Google Scholar 

  40. J.G. Stevens and K.R. Rempe, Recent enhancements in the X-IMAGEISIMAN core design environment, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–19 (1997).

    Google Scholar 

  41. D. Hodges and R.R. Rose, Interactive BWR core physics workstation, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 2–1 (1997).

    Google Scholar 

  42. G. Wiksell, OpenJack—a tool for optimizing core shuffle scheme, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 2–11 (1997).

    Google Scholar 

  43. A. Galperin, Exploration of the search space of the in-core fuel management problem by knowledge-based techniques, Nucl. Sci. Eng. 119:144 (1995).

    Google Scholar 

  44. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21:1087 (1953).

    Article  Google Scholar 

  45. M. Pincus, A Monte Carlo method for the approximate solution of certain types of constrained optimization problems, Oper. Res. 18: 1225 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Kirkpatrick, C.D. Gerlatt Jr. and M.P. Vecchi, Optimization by Simulated Annealing, Science 220:671 (1983).

    MathSciNet  Google Scholar 

  47. P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Practices, D. Reidel, Dordrecht (1987).

    Google Scholar 

  48. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor (1975).

    Google Scholar 

  49. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading (1989).

    MATH  Google Scholar 

  50. G.T. Parks and M.P. Knight, (A comparison of) PANTHER loading pattern optimization search options, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–67 (1997).

    Google Scholar 

  51. G.T. Parks, Multiobjective PWR reload core design by nondominated Genetic Algorithm search, Nucl. Sci. Eng. 124:178 (1996).

    Google Scholar 

  52. G.I. Maldonado, P.J. Turinsky, D.J. Kropaczek and G.T. Parks, Employing nodal Generalized Perturbation Theory for the minimization of feed enrichment during Pressurized Water Reactor in-core nuclear fuel management optimization, Nucl. Sci. Eng. 121:312 (1995).

    Google Scholar 

  53. P.M. Keller and P.J. Turinsky, Recent developments in FORMOSA-P, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–39 (1997).

    Google Scholar 

  54. J.G. Stevens, K.S. Smith and K.R. Rempe, Optimization of Pressurized Water Reactor shuffling by Simulated Annealing with heuristics, Nucl. Sci. Eng. 121:67 (1995).

    Google Scholar 

  55. J.G. Stevens and K.R. Rempe, Recent enhancements in the X-IMAGEISIMAN core design environment, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–19 (1997).

    Google Scholar 

  56. F.C.M. Verhagen, M. van der Schaar, W.J.M. de Kruijf, T.F.H. van de Wetering and R.D. Jones, ROSA, a utility tool for loading pattern optimization, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–31 (1997).

    Google Scholar 

  57. J.L. Bradfute, Y.A. Shatilla and B.J. Johansen, Recent developments in Westinghouse automated fuel management code, ALPS, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 8–49 (1997).

    Google Scholar 

  58. J.N. Carter, Genetic algorithms for incore fuel management and other recent developments in optimisation, Adv. Nucl. Sci. Technol. 25:113 (1997).

    Google Scholar 

  59. P.W. Poon and G.T. Parks, Application of Genetic Algorithms to in-core nuclear fuel management pptimization, Proc. Joint Int. Conf. Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, Vol. 1, 777 (1993).

    Google Scholar 

  60. E. Tanker and A.Z. Tanker, Application of a Genetic Algorithm to core reload pattern optimization, in: Reactor Physics and Reactor Computations, Y. Ronen and E. Elias, eds., Ben Gurion University of the Negev Press (1994).

    Google Scholar 

  61. M.D. DeChaine and M.A. Feltus, Nuclear fuel management optimization using Genetic Algorithms, Nucl. Technol. 111:109 (1995).

    Google Scholar 

  62. M.D. DeChaine and M.A. Feltus, Fuel management optimization using Genetic Algorithms and expert knowledge, Nucl. Sci. Eng. 124:188 (1996).

    Google Scholar 

  63. T. Bäck, J. Heistermann, C. Kappler and M. Zamparelli, Evolutionary algorithms support refueling of Pressurized Water Reactors, Proc. 3rd IEEE Conf. Evolutionary Computation, IEEE Press, 104 (1996).

    Google Scholar 

  64. J.K. Axmann, Parallel adaptive evolutionary algorithms for Pressurized Water Reactor reload pattern optimizations, Nucl. Technol. 119:276 (1997).

    Google Scholar 

  65. G. Rudolph, Evolution Strategies, in: Handbook of Evolutionary Computation, T. Bäck, D.B. Fogel and Z. Michalewicz, eds., IOP Publishing Ltd. and Oxford University Press (1997).

    Google Scholar 

  66. A. Galperin and Y. Kimhy, Application of knowledge-based methods in in-core fuel management, Nucl. Sci. Eng. 109:103 (1991).

    Google Scholar 

  67. T. Fukuzaki, K. Yoshida, Y. Kobayashi, H. Matsuura and K. Hoshi, Knowledge based system for control rod programming of BWRs, J. Nucl. Sci. Technol. 25:120 (1988).

    Article  Google Scholar 

  68. C. Lin, An automatic control rod programming method for a Boiling Water Reactor, Nucl. Technol. 92:118 (1990).

    Google Scholar 

  69. L.S. Lin and C. Lin, A rule-based expert system for automatic control rod pattern generation for Boiling Water Reactors, Nucl. Technol. 95:1 (1991).

    Google Scholar 

  70. M.S. Taner, S.H. Levine and M-Y. Hsiao, A two-step method for developing a control rod program for Boiling Water Reactors, Nucl. Technol. 97:27 (1992).

    Google Scholar 

  71. B.R. Moore and P.J. Turinsky, FORMOSA-B: a BWR incore fuel management optimization package, Proc. Topl. Mtg. Advances in Nuclear Fuel Management II, Myrtle Beach, ANS, 17–21 (1997).

    Google Scholar 

  72. B.R. Moore, Higher Order Perturbation Theory for BWR In-Core Nuclear Fuel Management Optimization, PhD Thesis, North Carolina State University (1996).

    Google Scholar 

  73. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston (1997).

    MATH  Google Scholar 

  74. J.R. Koza, Genetic Programming, MIT Press, Cambridge (1992).

    MATH  Google Scholar 

  75. J.R. Koza, Genetic Programming II, MIT Press, Cambridge (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Turinsky, P.J., Parks, G.T. (2002). Advances in Nuclear Fuel Management for Light Water Reactors. In: Lewins, J., et al. Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 26. Springer, Boston, MA. https://doi.org/10.1007/0-306-47088-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47088-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46110-1

  • Online ISBN: 978-0-306-47088-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics