Skip to main content

Increasing the Resolution of Far-Field Fluorescence Light Microscopy by Point-Spread-Function Engineering

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 2nd ed., Garland Publishing, (1989), 136–138.

    Google Scholar 

  2. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413 (1873).

    Article  Google Scholar 

  3. L. Rayleigh, Scientific Papers, Vol. 4, Cambridge University Press, (1903), p. 235.

    Google Scholar 

  4. S. Wischnitzer, Introduction to Electron Microscopy, 3rd ed. Pergamon Press (1981).

    Google Scholar 

  5. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press (1993).

    Google Scholar 

  6. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 49, 57–59 (1982).

    Article  Google Scholar 

  7. D. W. Pohl and D. Courjon (eds.) Proc. NFO1, NATO AS1 Series E 242 (1993).

    Google Scholar 

  8. J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology, 2nd ed., Freeman, New York (1990), p. 126.

    Google Scholar 

  9. E. H. Synge, Phil. Mag. 6, 356–362 (1928).

    CAS  Google Scholar 

  10. E. Betzig and R. Chichester, Science 262, 1422–1424 (1993).

    Article  CAS  Google Scholar 

  11. M. Teraski and M. E. Dailey, Confocal microscopy of living cells, in: Handbook of Biological Confocal Microscopy, 2nd ed. (J. Pawley, ed.), pp. 327–344, Plenum, New York (1995)

    Chapter  Google Scholar 

  12. R. Y. Tsien and A. Waggoner, Fluorophores for confocal microscopy, in: Handbook of Biological Confocal Microscopy, 2nd ed. (J. Pawley, ed.), pp. 267–277, Plenum, New York (1995).

    Chapter  Google Scholar 

  13. T. Cremer, A. Kurz, R. Zirbel, S. Dietzel, B. Rinke, E. Schröck, M. R. Speicher, U. Mathieu, A. Jauch, P. Emmerich, H. Scherthan, T. Ried, C. Cremer, and T. Lichter, Cold Spring Harbor Symp. Quant. Biol., 58, 777–792 (1993).

    Article  CAS  Google Scholar 

  14. R. Kopelman and W. Tan, Science 262, 1382 (1993).

    Article  CAS  Google Scholar 

  15. S. W. Hell, Improvement of lateral resolution in far-field fluorescence light microscopy by using two-photon excitation with offset beams, Opt. Commun. 106, 19–24 (1994).

    Article  Google Scholar 

  16. S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission; stimulated emission depletion fluorescence microscopy, Opt. Lett. 19, 780–782 (1994.

    Article  CAS  Google Scholar 

  17. S. W. Hell and M. Kroug, Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit, Appl. Phys. B. 60, 495–497 (1995).

    Article  Google Scholar 

  18. S. Hell, European Patent EP0491289 (filed 1990) published 1992.

    Google Scholar 

  19. S. Hell and E. H. K. Stelzer, Properties of a 4Pi-confocal microscope, J. Opt. Soc. Am. A 9, 2159–2164 (1992).

    Article  Google Scholar 

  20. S. Hell and E. H. K. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal microscope using two-photon excitation, Opt. Commun. 93, 277–281 (1992).

    Article  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics, 6th ed., Pergamon Press, Oxford (1993), pp. 438–442.

    Google Scholar 

  22. C. J. R. Sheppard and H. J. Matthews, Imaging in high-aperture optical systems, J. Opt. Soc. Am. A 4, 1354–1360 (1987).

    Article  Google Scholar 

  23. S. Hell, Physical basis of confocal fluorescence microscopy, Solubiologi (Jyväskylä, Finland) 3, 183–185 (1991).

    Google Scholar 

  24. S. Hell, E. Lehtonen, and E. Stelzer, Confocal fluorescence microscopy: wave optics considerations and applications to cell biology, in: New Dimensions of Visualization in Biomedical Microscopies (A. Kriete, ed.), pp. 145–160, Verlag Chemie, Weinheim (1992).

    Google Scholar 

  25. S. W. Hell, J. Soukka, and P. E. Hänninen, Two-and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: a study based on photon optics, Bioimaging 3, 1–6 (1995).

    Article  Google Scholar 

  26. C. J. R. Sheppard, and A. Choudhury, Image formation in the scanning microscope, Opt. Ada 24, 1051–1073 (1977).

    Google Scholar 

  27. G. J. Brakenhoff, P. Blom, and P. Barends, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117, 219–232 (1979).

    Article  Google Scholar 

  28. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, Academic Press, London (1984).

    Google Scholar 

  29. T. Wilson, Confocal Microscopy, Academic Press, London (1990).

    Google Scholar 

  30. R. W. Wijnaendts van Resandt, H. J. B. Marsman, R. Kaplan, J. Davoust, E. H. K. Stelzer, and R. Stricker, Optical fluorescence microscopy in three dimensions: microtomoscopy, J. Microsc. 138, 29–34 (1985).

    Article  Google Scholar 

  31. N. Åslund, A. Liljeborg, P. O. Forsgren, and S. Wahlsten, Three-dimensional digital microscopy using the PHOIBOS scanner, Scanning 9, 227–235 (1987).

    Article  Google Scholar 

  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, (1983), pp. 4–10.

    Book  Google Scholar 

  33. A. Einstein, On the quantum theory of radiation, Phys. Z. 18, 121–128 (1917).

    CAS  Google Scholar 

  34. M. D. Galanin, B. P. Kirsano∖itv, and Z. A. Chizhikova, Luminescence quenching of complex molecules in a strong laser field. Sov. Phys. JETP Lett. 9, 502–507 (1969).

    CAS  Google Scholar 

  35. I. Gryczynski, V Bogdano∖itv, and J. R. Lakowicz, Light quenching of tetraphenylbutadiene fluorescence observed during two-photon excitation, J. Fluoresc. 3, 85–92 (1993).

    Article  CAS  Google Scholar 

  36. J. R. Lakowicz, I. Gryczynski, V Bogdano∖itv, and J. Kusba, Light quenching and fluorescence depolarization of rhodamme and applications of this phenomenon to biophysics, J. Phys. Chem. 98(1), 334–342 (1994).

    Article  CAS  Google Scholar 

  37. J. R. Lakowicz, I. Gryczynski, J. Kusba, and V Bogdano∖itv, Light quenching of fluorescence: a new method to control the excited state lifetime and orientation of fluorophores, Photochem. Photobiol. 60, 546–562 (1994).

    Article  CAS  Google Scholar 

  38. J. Kusba, V Bogdano∖itv, I. Gryczynski, and J. R. Lakowicz, Theory of light quenching; effects on fluorescence polarization, lutensit, and anisotropy decays, Biophysics J., 67, 2024–2040 (1994).

    Article  CAS  Google Scholar 

  39. F. P. Schäfer (ed.), Dye Lasers, 3rd ed., Topics in Applied Physics, Vol 1, Springer, Berlin (1990).

    Google Scholar 

  40. K. H. Drexhage, Siegen, Germany, private communication (1994).

    Google Scholar 

  41. C. J. R. Sheppard, The use of lenses with annular aperture in scanning optical microscopy, Optik 48, 329 (1977).

    Google Scholar 

  42. S. W. Hell, P. E. Hänninen, M. Schrader, T. Wilson, and E. Soini, Resolution beyond the diffraction limit: 4Pi-confocal, STED and GSD, Zool. Stud. 34, Suppl I (1995).

    Google Scholar 

  43. S. W. Hell, M. Schrader, K. Bahlmann, F. Meinecke, J. R. Lakowicz, and I. Gryczynski, Stimulated emission on a microscopic scale: light quenching of pyridinium 2 using a Ti:sapphire laser, 180, RP1–RP2 (1995).

    Google Scholar 

  44. U. Brackmann, Lambdachrome Laser Dyes, 2nd ed., Lambda Physik, Göttingen, Germany (1985).

    Google Scholar 

  45. M. Schrader, F. Meinecke, K. Bahlmann, C. Cremer, and S. W. Hell, Monitoring the excited state by stimulated emission depletion, Bioimaging 3, 147–153 (1995).

    Article  CAS  Google Scholar 

  46. R. Gandin, Y. Lion, and A. Van de Horst, Photochem. Photobiol. 37, 271 (1983).

    Article  CAS  Google Scholar 

  47. C. Cremer and T. Cremer, Considerations on a laser-scanning-microscope with high resolution and depth-of-field, Microsc. Acta 81, 31–44 8 (1978).

    CAS  Google Scholar 

  48. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).

    Article  Google Scholar 

  49. S. W. Hell, S. Lindek, and E. H. K. Stelzer, Enhancing the axial resolution in far-field light microscopy: two-photon excitation 4Pi-confocal fluorescence microscopy, J. Mod Opt. 41(4), 675–681 (1994).

    Article  Google Scholar 

  50. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Measurement of the 4Pi-confocal point spread function proves 75 nm resolution, Appl. Phys. Lett. 64, 1335–1338 (1994).

    Article  Google Scholar 

  51. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, Confocal microscopy with enhanced detection aperture: type B 4Pi-confocal microscopy, Opt. Lett. 19, 222–224 (1994).

    Article  CAS  Google Scholar 

  52. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, Optical transfer functions of 4Pi confocal microscopes: theory and experiment, Opt Lett. 22, 436–438 (1997).

    Article  CAS  Google Scholar 

  53. C. J. R. Sheppard and C. J. Cogswell, in: Optics in Medicine. Biology and Environmental Research (G. v. Bally, ed.) Elsevier, Amsterdam (1993).

    Google Scholar 

  54. M. Gu and C. J. R. Sheppard, Three-dimensional transfer-functions in 4Pi confocal microscopes, J. Opt. Soc. Am. A, 11, 1619–1627 (1994).

    Article  Google Scholar 

  55. M. Gu, and C. J. R. Sheppard, Optical transfer-function analysis for 2-photon 4pi confocal fluorescence microscopy, Opt. Commun. 114, 45–49 (1995).

    Article  CAS  Google Scholar 

  56. F. Lanni, Applications of Fluorescence in the Biological Sciences, (D. L. Taylor, ed.) Liss, New York (1986) pp. 505–521.

    Google Scholar 

  57. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366, 44–46 (1993).

    Article  CAS  Google Scholar 

  58. F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor, Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy, Bioimaging 1, 187–192 (1994).

    Article  Google Scholar 

  59. C. J. R. Sheppard and R. Kompfner, Resonant scanning optical microscope, Appl. Opt. 17, 2879–2883 (1978)

    Article  CAS  Google Scholar 

  60. W. Denk, J. H. Strickler, and W. W. Webb, Two-photon fluorescence scanning microscopy, Science 248, 73–75 (1990).

    Article  CAS  Google Scholar 

  61. P. E. Hänninen, S. W. Hell, J. Salo, C. Cremer, and E. Soini, Imaging at 140 nm axial resolution with a two-photon excitation 4Pi-confocal fluorescence microscope, Appl. Phys. Lett. 66(13), 1698–1700 (1995).

    Article  Google Scholar 

  62. S. W. Hell, A. R. Utz, M. Schrader, P. E. Hänninen, and E. Soini, Pulsed laser fluorophore deposition: a method for measuring the axial response of two-photon excitation microscopes, J. Opt. Soc. Am. A, 12(9) 2072–2076 (1995).

    Article  CAS  Google Scholar 

  63. D. W. Piston, R. G. Summers, and W. W. Webb, Observation of nuclear division in living sea urchin embryos by two photon fluorescence microscopy, Biophys. J. 63A, 110 (1993).

    Google Scholar 

  64. E. H. K Stelzer, S. Hell, S. Lindek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104, 223–228 (1994).

    Article  CAS  Google Scholar 

  65. W. Denk, Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions, Proc. Natl. Acad. Sci. U.S.A. 91, 6629–6633 (1994).

    Article  CAS  Google Scholar 

  66. D. W. Piston, B. R. Masters, and W. W. Webb, Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc. 178, 20–27 (1995).

    Article  CAS  Google Scholar 

  67. P. E. Hänninen, E. Soini, and S. W. Hell, Continuous wave excitation two-photon fluorescence microscopy, J. Microsc. 176, 222–225 (1994).

    Article  Google Scholar 

  68. S. W. Hell, P. E. Hänninen, M. Schrader, and E. Soini, Annular aperture two-photon excitation fluorescence microscopy, Opt. Commun. 117, 20–24, 1995.

    Article  CAS  Google Scholar 

  69. S. W. Hell, M. Schrader, P. E. Hänninen, and E. Soini, Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared, Opt. Commun. 117, 20–24 (1995)

    Article  CAS  Google Scholar 

  70. M. Schrader and S. W. Hell, 4Pi-confocal images with axial superresolution, J. Microsc. 183, 189–193 (1996).

    Article  Google Scholar 

  71. W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, Superresolution three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487, (1995).

    Article  CAS  Google Scholar 

  72. S. Hell, G. Reiner, C. Cremer, and E. Stelzer, Refractive index mismatch induced aberrations in confocal fluorescence microscopy, J. Microsc. 169, 391–405, (1993).

    Article  Google Scholar 

  73. H. Jacobsen, P. E. Hänninen, and S. W. Hell, Effect of refractive index mismatch in two-photon confocal fluorescence microscopy, J. Microsc. 176, 226–230 (1994).

    Article  Google Scholar 

  74. H. Jacobsen and S. W. Hell, Effect of refractive index mismatch on the resolution and image brightness in confocal fluorescence microscopy, Bioimaging 3, 39–47, (1995).

    Article  Google Scholar 

  75. Y. Kawata, K. Fujita, O. Nakamura, and S. Kawata, 4Pi confocal optical system with phase conjugation, Opt. Lett. 21, 1415–1417 (1996)

    Article  CAS  Google Scholar 

  76. M. Eigen and R. Rigler, Sorting single molecules: Application to diagnostics and evolutionary biotechnology, Proc. Natl. Acad. Sci. U.S.A. 91, 5740–5747 (1994).

    Article  CAS  Google Scholar 

  77. Ü. Mets and R. Rigler, Submillisecond detection of single rhodamine molecules in water, J.Fluoresc. 4, 259–264 (1994).

    Article  CAS  Google Scholar 

  78. S. Nie, D. T. Chiu, and R. N. Zare, Probing individual molecules with confocal fluorescence microscopy, Science 266, 1018–1021 (1994).

    Article  CAS  Google Scholar 

  79. M. Vaez-Iravani and D. I. Kavaldjie∖itv, Resolution beyond the diffraction limit using frequency domain field confinement in scanning microscopy, Ultramicrosc. 61, 105–110 (1995)

    Article  CAS  Google Scholar 

  80. S. Lindek, N. Salmon, C. Cremer, and E. H. K. Stelzer, Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy, Optik 98, 15–20 (1994)

    Google Scholar 

  81. S. Lindek, R. Pick, and E. H. K. Stelzer, Confocal theta microscope with three objective lenses, Rev. Sci. Instrum. 65, 3367–3372 (1994).

    Article  CAS  Google Scholar 

  82. S. Lindek, E. H. K. Stelzer, and S. W. Hell, Two new high-resolution confocal fluorescence microscopies (4Pi, Theta) with one and two-photon excitation, in: Handbook of Biological Confocal Microscopy (J. Pawley, ed.), Plenum, New York (1995).

    Google Scholar 

  83. H. T. M. van der Voort and K. C. Strasters, Restoration of confocal images for quantitative analysis, J. Microsc. 178, 165–181 (1995).

    Article  Google Scholar 

  84. W. A. Carrington, R. M. Lynch, and E. D. W. Moore, Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure, Science 268, 1483–1487 (1995).

    Article  CAS  Google Scholar 

  85. H. Kano, H. T. M. van der Voort, M. Schrader, G. van Kempen, and S. W. Hell, Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy, Bioimaging 4, 187–197 (1996).

    Article  Google Scholar 

  86. M. Schrader, S. W. Hell, and H. T. M. van der Voort, Potential of confocal microscopes to resolve in the 50-100 nm range, Appl. Phys. Lett. 69, 3644–3646 (1996).

    Article  Google Scholar 

  87. S. W. Hell, M. Schrader, and H. T. M. van der Voort, Far-field fluorescence microscopy with resolution in the 100 nm range, J. Microsc. 187, 1–5 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hell, S.W. (2002). Increasing the Resolution of Far-Field Fluorescence Light Microscopy by Point-Spread-Function Engineering. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 5. Springer, Boston, MA. https://doi.org/10.1007/0-306-47070-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47070-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45553-7

  • Online ISBN: 978-0-306-47070-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics