Skip to main content

Multiphoton Excitation of Biochemical Fluorophores

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Friedrich and W. M. McClain, Two-photon molecular electronic spectroscopy, Annu. Rev. Phys. Chem. 31, 559–577 (1980).

    CAS  Google Scholar 

  2. M. J. Wirth, A. Koskelo, and M. J. Sanders, Molecular symmetry and two-photon spectroscopy, Appl. Spectrosc. 35, 14–21 (1981).

    CAS  Google Scholar 

  3. R. R. Birge, One-photon and two-photon excitation spectroscopy, in: Ultrasensitive Laser Spectroscopy (D. S. Kliger, ed.), pp. 109–174, Academic Press, New York (1983).

    Google Scholar 

  4. R. D. Jones and P. R. Callis, Two-photon spectra of inductively perturbed naphthalene, Chem. Phys. Letts. 144, 158–164 (1989).

    Google Scholar 

  5. M. J. Wirth, A. C. Koskelo, C. E. Mohler, and B. L. Lentz, Identification of methyl derivatives of naphthalene by two-photon symmetry parameters, Anal. Chem. 53, 2045–2048 (1981).

    CAS  Google Scholar 

  6. M. B. Masthay, L. A. Findsen, B. M. Pierce, D. F. Bocian, J. S. Lindsey, and R. R. Birge, A theoretical investigation of the one-and two-photon properties of porphyrins, J. Chem. Phys. 84, 3901–3915 (1986).

    CAS  Google Scholar 

  7. H. L.-B. Fang, R. J. Thrash, and G. E. Leroi, Observation of the low-energy 1 A g state of diphenylhexatriene by two-photon excitation spectroscopy, Chem. Phys. Letts. 57, 59–63 (1978).

    CAS  Google Scholar 

  8. B. Hudson, Linear polyene electronic structure and spectroscopy, Ann. Rev. Phys. Chem. 25, 437–460 (1974).

    CAS  Google Scholar 

  9. R. R. Birge, Two-photon spectroscopy of protein-bound chromophores, Acc. Chem. Res. 19, 138–146 (1986).

    CAS  Google Scholar 

  10. B. E. Anderson, R. D. Jones, A. A. Rehms, P. Ilich, and P. R. Callis, Polarized two-photon fluorescence excitation Spectra of indole and benzimidazole, Chem. Phys. Letts. 125, 106–112 (1986).

    CAS  Google Scholar 

  11. A. Rehms and P. R. Callis, Resolution of L a and L b bands in methyl indoles by two-photon spectroscopy, Chem. Phys. Letts. 140, 83–89 (1987).

    CAS  Google Scholar 

  12. W. M. McClain, Excited state symmetry assignment through polarized two-photon absorption studies of fluids, J. Chem. Phys. 55, 2789–2796 (1971).

    Google Scholar 

  13. M. Wirth, A. Koskelo, and M. J. Sanders, Molecular symmetry and two-photon spectroscopy, Appl. Spectry. 35, 14–21 (1981).

    CAS  Google Scholar 

  14. W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science 248, 73–76 (1990).

    CAS  Google Scholar 

  15. D. W. Piston, D. R. Sandison, and W. W. Webb, Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy, Proc. SPIE 1640, 379–389 (1992).

    CAS  Google Scholar 

  16. W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowbridge, D. W. Tank, and R. Yuste, Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy, J. Neuros. Meth. 54, 151–152 (1994).

    CAS  Google Scholar 

  17. Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, and B. J. Tromberg, Two-photon fluorescence excitation in continuous-wave infrared optical tweezers, Opt. Lett. 20, 2246–2248 (1995).

    CAS  Google Scholar 

  18. K. Loenig, T. Krasieva, Y. Liu, M. W. Berns, and B. J. Tromberg, Two-photon excitation in living cells induced by low-power CW laser beams, SPIE Proc. 2678, 30–37 (1996).

    Google Scholar 

  19. J. R. Lakowicz, I. Gryczynski, J. Kusba, and E. Danielsen, Two-photon induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers, J. Fluoresc. 2, 247–258 (1992).

    CAS  Google Scholar 

  20. J. R. Lakowicz and I. Gryczynski, Fluorescence intensity and anisotropy decay of the 4’,6-diamidino-2-phenylindole-DNA complex resulting from one-photon and two-photon excitation, J. Fluoresc. 2, 117–022 (1992).

    CAS  Google Scholar 

  21. I. Gryczynski and J. R. Lakowicz, Fluorescence intensity and anisotropy decays of the DNA stain HOECHST 33342 resulting from one-photon and two-photon excitation, J. Fluoresc. 4, 331–336 (1994).

    CAS  Google Scholar 

  22. J. R. Lakowicz and I. Gryczynski, Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation, Biophys. Chem. 45, 1–6 (1993).

    Google Scholar 

  23. J. R. Lakowicz, I. Gryczynski, E. Danielsen, and J. Frisoli, Anisotropy spectra of indole and N-acetyl-L-tryptophanamide observed for two-photon excitation of fluorescence, Chem. Phys. Lett. 194, 282–287 (1992).

    Google Scholar 

  24. P. R. Callis, On the theory of two-photon induced fluorescence anisotropy with applications to indoles, J. Chem. Phys. 99, 27–37 (1993).

    CAS  Google Scholar 

  25. I. Gryczynski and J. R. Lakowicz, Quenching of merthylcyclohexane fluorescence by methanol, Photochem. Pholobiol. 62, 426–432 (1995).

    CAS  Google Scholar 

  26. I. Gryczynski, H. Szmacinski, and J. R. Lakowicz, On the possibility of calcium imaging using Indo-1 with three-photon excitation, Photochem. Photobiol. 62, 804–808 (1995).

    CAS  Google Scholar 

  27. I. Gryczynski, H. Malak, and J. R. Lakowicz, Three-photon excitation of a tryptophan derivative using a fs Ti:sapphire laser, Biospectmscopy 2, 9–15 (1996).

    CAS  Google Scholar 

  28. B. S. Hudson and B. E. Kohler, A low-lying weak transition in the polyene α,ω-diphenyloctate-traene, Chem. Phys. Lett. 14, 299–304 (1972).

    CAS  Google Scholar 

  29. H. L.-B. Fang, R. J. Thrash, and G. E. Leroi, Observation of the low-energy 1 A g state of diphenylhexatriene by two-Photon excitation spectroscopy, Chem. Phys. Lett. 57, 59–63 (1978).

    CAS  Google Scholar 

  30. J. Saltiel, D. F. Sears, Jr., Y.-P. Sun, and J.-O. Choi, Evidence for ground-state s-cis conformers in the fluorescence spectra of all-trans-l,6-diphenyl-1,3,5-hexatriene, J. Am. Chem. Soc. 114, 3607–3612 (1992).

    CAS  Google Scholar 

  31. J. R. Lakowicz and I. Gryczynski, Frequency-domain fluorescence spectroscopy, in: Topics in Fluorescence Spectroscopy, Vol. 1: Techniques (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 293–355 (1991).

    Google Scholar 

  32. C. D. Stubbs and B. W. Williams, in: Topics in Fluorescence Spectroscopy, Vol. 3 (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 231–271 (1992).

    Google Scholar 

  33. F. Mulders, H. van Langen, G. van Ginkel, and Y. K. Levine, The static and dynamic behaviour of fluorescent probe molecules in lipid bilayers, Biochim. Biophys. Acta. 859, 209–218 (1986).

    CAS  Google Scholar 

  34. M. Straume and B. J. Litman, Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of l,6-diphenyl-l,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene anisotropy decays, Biochemistry 26, 5113–5120 (1987).

    CAS  Google Scholar 

  35. G. Weber, Polarization of the fluorescence of solution, in: Fluorescence and Phosphorescence Analysis: Principles and Applications, Interscience, New York, pp. 217–240 (1966).

    Google Scholar 

  36. A. Kawski, I. Gryczynski, and Z. Gryczynski, Fluorescence anisotropies of 4-dimethylamino-ω-diphenylphosphinyl-rran.s-styrene in isotropic media in the case of one-and two-photon excitation, Z. Naturforsch. 48a, 551–556 (1993).

    Google Scholar 

  37. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, E. Danielsen, and M. J. Wirth, Time-resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-Photon excitation and frequency-domain fluorometry, J. Phys. Chem. 98, 3000–3006 (1992).

    Google Scholar 

  38. C. Wan and C. K. Johnson, Time-resolved anisotropic two-photon spectroscopy, Chem. Phys. 179, 513–531 (1994).

    CAS  Google Scholar 

  39. C. Wan and C. K. Johnson, Time-resolved two-photon induced anisotropy decay: the rotational diffusion regime, J. Chem. Phys. 101, 10283–10291 (1994).

    CAS  Google Scholar 

  40. P. R. Callis, On the theory of two-photon induced fluorescence anisotropy with application to indole, J. Chem. Phys. 99, 27–37 (1993).

    CAS  Google Scholar 

  41. S.-Y. Chen and B. W. Van Der Meer, Theory of two-photon induced fluorescence anisotropy decay in membranes, Biophys. J. 64, 1567–1575 (1993).

    CAS  Google Scholar 

  42. J. R. Lakowicz, H. Cherek, J. Kuśba, I. Gryczynski, and H. Malak, Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy, J. Fluores. 3, 103–116 (1990).

    Google Scholar 

  43. J. R. Lakowicz, I. Gryczynski, and E. Danielsen, Anomalous differential polarized phase angles for two-photon excitation with isotropic depolarizing rotations, Chem. Phys. Lett. 191, 47–53 (1992).

    CAS  Google Scholar 

  44. G. G. Belford, R. L. Belford, and G. Weber, Dynamics of fluorescence polarization in macro-molecules, Proc. Natl. Acad. Sci. 69, 1392–1393 (1972).

    CAS  Google Scholar 

  45. S. M. Kennedy and F. E. Lytle, p-Bis(o-methylstyryl)benzene as a power-squared sensor for two-photon absorption measurements between 537 and 694 nm, Anal. Chem. 58, 2643–2647 (1986).

    CAS  Google Scholar 

  46. C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B. 13, 481–491 (1996).

    CAS  Google Scholar 

  47. A. Fischer, C. Cremer, and E. H. K. Stelzer, Fluorescence of coumarins and xanthenes and two-photon absorption with a pulsed titanium-sapphire laser, Appl. Opt. 34, 1989–2003 (1995).

    CAS  Google Scholar 

  48. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, E. Danielsen, and M. J. Wirth, Time resolved fluorescence intensity and anisotropy decays of 2,5-diphenyloxazole by two-photon excitation and frequency-domain fluorometry, J. Phys. Chem. 96, 3000–3006 (1992).

    CAS  Google Scholar 

  49. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand, The global analysis of fluorescence intensity and anisotropy decay data: second-generation theory and programs, in: Topics in Fluorescence Spectroscopy, Vol. 2: Principles (J. Lakowicz, ed.), Plenum Press, New York, pp. 241–305 (1991).

    Google Scholar 

  50. M. Straume, S. C. Frasier-Cadoret, and M. L. Johnson, Least-squares analysis of fluorescence data, in: Topics in Fluorescence Spectroscopy, Vol. 2: Principles (J. Lakowicz, ed.), Plenum Press, New York, pp. 177–239 (1991).

    Google Scholar 

  51. G. Weber, Polarization of the fluorescence of solutions, in: Fluorescence and Phosphorescence Analysis (D. M. Hercules, ed.), Interscience, New York, pp. 217–240 (1966).

    Google Scholar 

  52. M. R. Eftink, L. A. Selvidge, P. R. Callis, and A. A. Rehms, Photophysics of indole derivatives: experimental resolution of L a and L b transitions and comparison with theory, J. Phys. Chem. 94, 3469–3479 (1990).

    CAS  Google Scholar 

  53. B. Valeur and G. Weber, Resolution of the fluorescence excitation spectrum of indole into the 1 L a and 1 L b excitation bands, Photochem. Photobiol. 25, 441–444 (1977).

    CAS  Google Scholar 

  54. M. R. Eftink and Z. Chen, Evidence for dual L a and L b emission in 5-methylindole, J. Fluoresc. 4, 165–168 (1994).

    CAS  Google Scholar 

  55. J. M. Beechem and L. Brand, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54, 43–71 (1985).

    CAS  Google Scholar 

  56. F. Hirayama and S. Lipsky, Fluorescence of saturated hydrocarbons, J. Chem. Phys. 51, 3616–3617 (1969).

    CAS  Google Scholar 

  57. F. Hirayama, W. Rothman, and S. Lipsky, Fluorescence of saturated hydrocarbons. II: The effect of alkyl substituents, Chem. Phys. Lett. 5, 296–298 (1970).

    CAS  Google Scholar 

  58. W. Rothman, F. Hirayama, and S. Lipsky, Fluorescence of saturated hydrocarbons. I11: The effect of molecular structure, J. Chem. Phys. 58, 1300–1317 (1973).

    CAS  Google Scholar 

  59. J. R. Lakowicz and I. Gryczynski, Fluorescence intensity decays of cyclohexane and methlcy-clohexane with two-photon excitation from a high repetition rate frequency-doubled dye laser, Biospectroscopy 1(3-8), 3–8 (1995).

    CAS  Google Scholar 

  60. I. Gryczynski and J. R. Lakowicz, Quenching of methylcyclohexane fluorescence by methanol, Photochem. Photobiol. 62, 426–432 (1995).

    CAS  Google Scholar 

  61. I. Gryczynski, A. Razynska, and J. R. Lakowicz, Two-photon induced fluorescence of linear alkanes; a possible intrinsic lipid probe, Biophys. Chem. 57, 291–295 (1996).

    CAS  Google Scholar 

  62. S. Dellonte, E. Gardini, F. Barigelletti, and G. Orlandi, Two-photon excitation of saturated hydrocarbons, Chem. Phys. Lett. 49, 596–598 (1977).

    CAS  Google Scholar 

  63. M. R. Eftink, Fluorescence quenching: theory and applications, in: Topics in Fluorescence Spectroscopy (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 53–126 (1991).

    Google Scholar 

  64. Landolt-Bornstein, Physikalische und Chemische Konstanten, 2. Teil, Bandteil B, p. 267 (1962).

    Google Scholar 

  65. J. R. Lakowicz and G. Weber, Quenching of fluorescence by oxygen-A probe for structural fluctuations in macromolecules, Biochemistry 12, 4161–4170 (1973).

    CAS  Google Scholar 

  66. R. A. Agbaria, I. Gryczynski, H. Malak, and J. R. Lakowicz, Two-photon induced fluorescence of cholestane, Biospectroscopy 2, 219–224 (1996).

    CAS  Google Scholar 

  67. J. R. Lakowicz and I. Gryczynski, Characterization of p-bis(O-methylstyryl) benzene as a life-time and anisotropy decay standard for two-photon induced fluorescence, Biophys. Chem. 47, 1–7 (1993).

    CAS  Google Scholar 

  68. A. Kawski, I. Gryczynski, and Z. Gryczynski, Fluorescence anisotropies of 4-dimethylamino-o-diphenylphosphinyl-trans-styrene in isotropic media in the case of one-and two-photon excitation, Z. Naturforsch. 48a, 551–556 (1993).

    Google Scholar 

  69. L. J. Libertini and E. W. Small, F F deconvolution of fluorescence decay data, Anal. Biochem. 138, 314–318 (1984).

    CAS  Google Scholar 

  70. J. R. Lakowicz, H. Cherek, and A. Baiter, Correction of timing errors in photomultiplier tubes used for phase-modulation fluorometry, Biochem. Biophys. Meth. 5, 131–146 (1981).

    CAS  Google Scholar 

  71. R. A. White, K. J. Kutz, and J. Wampler, in: Topics in Fluorescence Spectroscopy, Vol. 1: Techniques (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 379–407 (1991).

    Google Scholar 

  72. I. Gryczynski, H. Malak, and J. R. Lakowicz, Three-photon induced fluorescence of 2,5-diphenyloxaxole with a femtosecond Ti: sapphire laser, Chem. Phys. Lett. 245, 30–35 (1995).

    CAS  Google Scholar 

  73. I. Gryczynski, H. Malak, and J. R. Lakowicz, Three-photon excitation of p-quaterphenyl with a mode-locked fs Ti:sapphire laser, J. Fluoresc. 6, 139–145 (1996).

    CAS  Google Scholar 

  74. I. Gryczynski, H. Malak, S. W. Hell, and J. R. Lakowicz, Three-photon excitation of 2,5-bis(4-biphenyl)oxazole, J. Biomed. Opt. 1, 473–480 (1996).

    CAS  Google Scholar 

  75. H. Malak, I. Gryczynski, J. Dattelbaum, and J. R. Lakowicz, Three-photon induced fluorescence of diphenylhexatriene in solvents and lipid bilayers, J. Fluoresc. 7, 99–106 (1997).

    CAS  Google Scholar 

  76. Z. Huang and N. L. Thompson, Theory for two-photon excitation in pattern. Photobleaching with evanescent illumination, Biophys. Chem. 47, 241–249 (1993).

    CAS  Google Scholar 

  77. I. Gryczynski, V Bogdanov, and J. R. Lakowicz, Light quenching of tetraphenylbutadiene fluorescence observed during two-photon excitation, J. Fluoresc. 3, 85–92 (1993).

    CAS  Google Scholar 

  78. I. Gryczynski, H. Malak, and J. R. Lakowicz, Three-photon excitation of a tryptophan derivative using a fs-Ti: sapphire laser, Biospectroscopy 2, 9–15 (1996).

    CAS  Google Scholar 

  79. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, Three-photon excitation in fluorescence microscopy, J. Biomed. Opt. I, 71–74 (1996).

    Google Scholar 

  80. I. Gryczynski, H. Szmacinski, and J. R. Lakowicz, On the possibility of calcium imaging using Indo-1 with three-photon excitation, Photochem. Photobiol. 62, 804–808 (1995).

    CAS  Google Scholar 

  81. H. Szmacinski, I. Gryczynski, and J. R. Lakowicz, Three-photon induced fluorescence of the calcium probe 1ndo-1, Biophys. J. 70, 547–555 (1996).

    CAS  Google Scholar 

  82. J. R. Cable and A. C. Albrecht, A condensed phase study of the benzene B 2u — A 1g three-photon transition, J. Chem. Phys. 85, 3155–3164 (1986).

    CAS  Google Scholar 

  83. W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowbridge, D. W. Tank, and R. Yuste, Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy, J. Neurosci Meth. 54, 151–152 (1994).

    CAS  Google Scholar 

  84. S. W. Hell, S. Lindek, and E. H. Stelzer, Enhancing the axial resolution in far-field microscopy: two-photon 4Pi confocal fluorescence microscopy, J. Mod. Opt. 41, 675–681 (1994).

    Google Scholar 

  85. E. H. K.. Stelzer, S. Hell, S. Lmdek, R. Stricker, R. Pick, C. Storz, G. Ritter, and N. Salmon, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104, 223–228 (1994).

    CAS  Google Scholar 

  86. D. W. Piston, D. R. Sandison, and W. W. Webb, Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy, Proc. SPIE 1640, 379–389 (1992).

    CAS  Google Scholar 

  87. W. Denk, Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions, Proc. Natl. Acad. Sci. 91, 6629–6633 (1994).

    CAS  Google Scholar 

  88. I. Gryczynski and J. R. Lakowicz, Fluorescence intensity and anisotropy decays of the DNA stain HOECHST 33342 resulting from one-photon and two-photon excitation, J. Fluoresc. 4, 331–336 (1994).

    CAS  Google Scholar 

  89. I. Gryczynski, J. Kuśba, and J. R. Lakowicz, Light quenching of fluorescence using time-delayed laser pulses as observed by frequency-domain fluorometry, J. Phys. Chem. 98, 8886–8895 (1994).

    CAS  Google Scholar 

  90. P. R. Monson and W. M. McClain, Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene, J. Chem. Phys. 53, 29–37 (1970).

    CAS  Google Scholar 

  91. P. R. Monson and W. M. McClain, Complete polarization study of the two-photon absorption of liquid 1-chloronaphthalene, J. Chem. Phys. 56, 4817–4825 (1972).

    CAS  Google Scholar 

  92. D. Frolich and H. Mahr, Two-photon spectroscopy of anthracene, Phys. Rev. Lett. 16, 895–898 (1966).

    Google Scholar 

  93. W. M. McClain, Excited state symmetry assignment through polarized two-photon absorption studies of fluids, J. Chem. Phys. 55, 2789–2796 (1971).

    Google Scholar 

  94. M. W. Dowley, K. B. Eisenthal, and W. L. Peticolas, Two-photon laser excitation of polycyclic aromatic molecules, J. Chem. Phys. 47, 1609–1619 (1967).

    CAS  Google Scholar 

  95. J. R. Lakowicz, I. Gryczynski, H. Malak, and Z. Gryczynski, Fluorescence spectral properties of 2,5-diphenyl-1,3,4-oxadiazole with two-color two-photon excitation, J. Phys. Chem. 100, 19406–19411 (1996).

    CAS  Google Scholar 

  96. J. R. Lakowicz (ed.), Principles of Fluorescence Spectroscopy, Plenum Press, New York, p. 157 (1983).

    Google Scholar 

  97. J. R. Lakowicz, I. Gryczynski, H. Malak, and Z. Gryczynski, Two-color two-photon excitation of fluorescence, Photochem. Photobiol. 64, 632–635 (1996).

    CAS  Google Scholar 

  98. I. Gryczynski, H. Malak, and J. R. Lakowicz, Two-color two-photon excitation of indole, Biospectroscopy, 3, 97–101 (1996).

    Google Scholar 

  99. W. M. McClain, Two-photon molecular spectroscopy, Acc. Chem. Res. 7, 129–135 (1974).

    CAS  Google Scholar 

  100. J. B. Pawley, (ed.), Handbook of Biological Confocal Microscopy, rev. ed., Plenum Press, New York (1990); 2nd ed., p. 632 (1995).

    Google Scholar 

  101. J. R. Lakowicz, I. Gryczynski, J. Kuśba, and V Bogdanov, Light quenching of fluorescence: a new method to control the excited state lifetime and orientation of fluorophores, Photochem. Photobiol. 60, 546–562 (1994).

    CAS  Google Scholar 

  102. I. Gryczynski, J. Kuśba, Z. Gryczynski, H. Malak, and J. R. Lakowicz, Effect of fluorescence quenching by stimulated emission on the spectral properties of a solvent-sensitive fluorophore, J. Phys. Chem. 100, 10135–10144 (1996).

    CAS  Google Scholar 

  103. I. Gryczynski, J. Kuśba, and J. R. Lakowicz, Wavelength-selective light quenching of biochemical fluorophores, J. Biomed. Optics 2, 80–87 (1997).

    CAS  Google Scholar 

  104. S. W. Hell, M. Schrader, K. Bahlmann, F. Meinecke, J. R. Lakowicz, and I. Gryczynski, Stimulated emission on microscopic scale: light quenching of pyridine 2 using a Ti: sapphire laser, J. Micros. 180, RP1–RP2 (1995).

    Google Scholar 

  105. C. Y. Dong, P. T. C So, T. French, and E. Gratton, Fluorescence lifetime imaging by a synchronous pump-probe microscopy, Biophys. J. 69, 2234–2242 (1995).

    CAS  Google Scholar 

  106. D. W. Piston, B. R. Masters, and W. W. Webb, Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc. 178, 20–27 (1995).

    CAS  Google Scholar 

  107. S. B. Bambot, G. Rao, M. Romauld, G. M. Carter, J. Sipior, E. Terpetschnig, and J. R. Lakowicz, Sensing oxygen through skin using a red diode laser and fluorescence lifetimes, Biosensors Bioelectron. 10, 643–652 (1995).

    CAS  Google Scholar 

  108. H. Szmacinski and J. R. Lakowicz, Frequency-domain lifetime measurements and sensing in highly scattering media, Sensors Actuators B 30, 207–215 (1996).

    CAS  Google Scholar 

  109. H. Szmacinski and J. R. Lakowicz, Fluorescence lifetime-based sensing and imaging, Sensors Actuators B 29, 16–24 (1995).

    CAS  Google Scholar 

  110. A. J. Ozinskas, H. Malak, J. Joshi, H. Szmacinski, J. Britz, R. B. Thompson, P. A. Koen, and J. R. Lakowicz, Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy, Anal. Biochem. 213, 264–270 (1992).

    Google Scholar 

  111. J. R. Lakowicz and B. P. Maliwal, Optical sensing of glucose using phase-modulation fluorometry, Anal. Chim. Acta. 271, 155–164 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lakowicz, J.R., Gryczynski, I. (2002). Multiphoton Excitation of Biochemical Fluorophores. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 5. Springer, Boston, MA. https://doi.org/10.1007/0-306-47070-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47070-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45553-7

  • Online ISBN: 978-0-306-47070-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics