Skip to main content

Application of Fluorescence Sensing to Bioreactors

  • Chapter
Topics in Fluorescence Spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y-H. Lee and G. Tsao, Dissolved oxygen electrodes, in: Advances in Biochemical Engineering, Volume 13 (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.). Springer-Verlag, Berlin (1979).

    Google Scholar 

  2. S P. Srinivas, G. Rao, and R. Matuarasan, Redox potential in anaerobic and microaerobic fermentation, in: Handbook on Anaerobic Fermentation (L. E. Erickson and D. Y. C. Fung, eds.), Marcel Dekker, New York (1985).

    Google Scholar 

  3. H. Buhler, Principles and Problems of pH Measurement, (available from Ingold Electrodes, Inc., Wilmington, Massachusetts) (now Mettler Toledo, Inc.) (1980).

    Google Scholar 

  4. G. K. McMillan, Understand some basics of pH measurement, Chem. Eng. Prog. 87, 30–37 (1991).

    CAS  Google Scholar 

  5. P. J. F. Gommers, B. J. van Schie, J. P. van Dijken, and J. G. Kuenen, Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization, Biotechnol. Bioeng. 32, 86–94 (1988).

    Article  CAS  Google Scholar 

  6. J. S. Schultz, S. Mansouri, and I. Goldstein, Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites, Diabetes Care 5, 245–253 (1982).

    CAS  PubMed  Google Scholar 

  7. K. R. Srinivasan, S. Mansouri, and J. S. Schultz, Coupling of concanavalin A to cellulose hollow fibers for use in glucose affinity sensor, Biotechnol. Bioeng. 23, 233 (1986).

    Google Scholar 

  8. J. S. Schultz, Design of fibre-optic biosensors based on bioreceptors, in: Biosensors: Fundamentals and Applications (A. P. F. Turner, I. Karube, and G. S. Wilson, eds.), Oxford University Press, New York (1987).

    Google Scholar 

  9. S. J. Coppella and P. Dhuljati, Low cost computer coupled fermentor off-gas analysis via quadrupole mass spectrometer, Biotechnol. Bioeng. 29, 679–689 (1987).

    CAS  Google Scholar 

  10. R. O. Thomson, Bacterial toxins, in: Secondary Products of Metabolism (A. H. Rose, ed.), Academic Press, New York (1979).

    Google Scholar 

  11. E. Heinzle, H. Kramer, and I. J. Dunn, State analysis of fermentation using a mass spectrometer with membrane probe, Biotechnol. Bioeng. 27, 238–246 (1985).

    Article  CAS  Google Scholar 

  12. B. Buckland, T. Brix, H. Fastert, K. Gbewonyo, G. Hunt, and D. Jain, Bio/Technol. 3, 982 (1985).

    Article  CAS  Google Scholar 

  13. E. Heinzle, K. Furukawa, I. J. Dunn, and J. R. Bourne, Experimental methods for online mass spectrometry in fermentation technology, BiolTechnol. 1, 181–188 (1983).

    CAS  Google Scholar 

  14. J. K. Mclauglllin, C. L. Meyer, and E. T. Papoutsakis, Gas chromatography and gateway sensors for online state estimation of complex fermentations, Biotechnol. Bioeng. 27, 1246–1257 (1985).

    Google Scholar 

  15. T. Scheper and K. Schugerl, Culture fluorescence studies on aerobic continuous cultures of Saccharomuces cervevisiae, Appl. Microbiol. Biotechnol. 25, 440–444 (1986).

    Google Scholar 

  16. L. N. M. Duysens and J. Amesz, Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region, Biochem. Biophys. Acta 24, 19–26 (1957).

    Article  CAS  PubMed  Google Scholar 

  17. J. London and M. Knight, Concentrations of nicotinamide nucleotide coenzymes in micro-organisms, J. Gen. Microbiol. 44, 241–254 (1966).

    CAS  PubMed  Google Scholar 

  18. D. E. F. Harrison, Undamped oscillations of pyridine nucleotide and oxygen tension in chemostat cultures of klebsiella aerogenes, J. Cell Biol. 75, 514–521 (1970).

    Google Scholar 

  19. D. E. F. Harrison and B. Chance, Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms, Appl. Microbiol. 19, 446–450 (1970).

    CAS  PubMed  Google Scholar 

  20. W. B. Armiger, J. F. Forro, L. M. Montalvo, and J. F. Lee, The interpretation of on-line process measurements of intracellular NADH in fermentation processes, Chem. Eng. Commun. 45, 197–206 (1986).

    CAS  Google Scholar 

  21. W. Beyeler, A. Einsele, and A. Fiechter, On-line measurements of culture fluorescence: Method and application, Eur. J. Appl. Microbiol. Biotechnol. 13, 10–14 (1981).

    CAS  Google Scholar 

  22. J. H. T. Luong and D. J. Carrier, On-line measurement of culture fluorescence during cultivation of Methylomonas mucosa, Appl. Microbiol. Biotechnol. 24, 65–70 (1986).

    Article  CAS  Google Scholar 

  23. H.-P. Meyer, W. Beyeler, and A. Fiechter, Experiences with the on-line measurement of culture fluorescence during cultivation of Bacillus subtilis, Escherichia coli and Sporotrichum thermophile. J. Biotech. I, 341–349 (1984).

    Google Scholar 

  24. T. Scheper, A. Gebauer, A. Sauerbrei, A. Niehoff, and K. Schugerl, Measurement of biological parameters during fermentation processes, Anal. Chim. Acta 163, 111–118 (1984).

    Article  CAS  Google Scholar 

  25. T. Scheper, T. Lorenz, W. Schmidt, and K. Schugerl, On-line measurement of culture fluorescence for process monitoring and control of biotechnology processes, Ann. NY Acad. Sci. 506, 431–445 (1987).

    CAS  PubMed  Google Scholar 

  26. D. W. Zabriskie, Use of culture fluorescence for monitoring of fermentation systems, Biotechnol. Bioeng, Symp. 9, 117–123 (1979).

    Google Scholar 

  27. D. W. Zabriskie and A.E. Humphrey, Estimation of fermentation biomass concentration by measuring culture fluorescence, Appl. Environ. Microbiol. 35, 337–343 (1978).

    CAS  PubMed  Google Scholar 

  28. A. Einsele, D. L. Ristroph, and A. E. Humphrey, Substrate uptake mechanism for yeast cells. A new approach utilizing a fluorometer, Eur. J. Appl. Microbiol. Biotechnol. 6, 335–339 (1979).

    Article  CAS  Google Scholar 

  29. D. L. Ristroph, C. M. Watteeuw, W. B. Armiger, and A. E. Humphrey, Experience in the use of culture fluorescence for monitoring fermentations, J. Ferment. Technol. 55, 599–608 (1977).

    CAS  Google Scholar 

  30. B. Chance and B. Thorell, Fluorescence measurements of mitochondrial pyridine nucleotide in aerobiosis and anaerobiosis, Nature 184, 931–934 (1959).

    CAS  PubMed  Google Scholar 

  31. E. L. Winter, G. Rao, and T. W. Cadman, Relationship between culture redox potential and culture fluorescence in Corynebacterium glutamicum. Biotechnol. Tech. 2, 233–236 (1988).

    CAS  Google Scholar 

  32. A. Einsele, D. L. Ristroph, and A. E. Humphrey, Mixing times and glucose uptake measured with a fluorometer, Biotechnol. Bioeng. 20, 1487–1492 (1978).

    Article  CAS  Google Scholar 

  33. S. A. Siano and R. Mutharasan, NADH fluorescence and oxygen uptake responses of hybridoma cultures to substrate pulse and step changes, Biotechnol. Bioeng. 37, 141–159 (1990).

    Google Scholar 

  34. P. M. Doran and J. E. Bailey, Effects of immobilization on the nature of glycolytic oscillations in yeast, Biotechnol. Bioeng. 29, 892–897 (1987).

    Article  CAS  Google Scholar 

  35. W. Muller, G. Wehnert, and T. Scheper, Fluorescence monitoring of immobilized microorganisms in cultures, Analytica Chim. Acta 213, 47–53 (1988).

    Google Scholar 

  36. K. F. Reardon, T. Scheper, and J. E. Bailey, In situ fluorescence monitoring of immobilized Clostridium actabutylicum, Biotechnol Lett. 8, 817–822 (1986).

    Article  CAS  Google Scholar 

  37. G. Rao and R. Mutharasan, NADH levels and solventogenesis in Clostridium acerobutylicum: new insights through culture fluorescence, Appl. Microbiol Biotechnol. 30, 59–66 (1989).

    CAS  Google Scholar 

  38. K. F. Reardon, T.-H. Scheper, and J. E. Bailey, Metabolic pathway rates and culture fluorescence in batch fermentations of Clostridium Acetobutylicum. Biotechnol. Prog. 3, 153–167 (1987).

    CAS  Google Scholar 

  39. A. K. Srivastava and B. Volesky, Measurement and regulation of culture reduction state in Clostridium acetobutylicum, Biotechnol. Bioeng. 38, 181–190 (1991a).

    CAS  Google Scholar 

  40. A. K. Srivastava and B. Volesky, NADH fluorescence in a carbon-limited fermentation, Biotechnol. Bioeng. 38, 191–195 (1991b).

    CAS  Google Scholar 

  41. A. K. Srivastava and B. Volesky, On-line fluorescence measurements in assessing culture metabolic activities, Appl. Microbiol. Biotech. 34, 450–457 (1991c).

    Article  CAS  Google Scholar 

  42. C. C. Walker and P. Dhurjati, Use of culture fluorescence as a sensor for on-line discrimination of host and overproducing recombinant Escherichia coli. Biotechnol. Bioeng. 33, 500–505 (1989).

    Article  CAS  Google Scholar 

  43. C. M. Watteeuw, W. B. Armiger, D. L. Ristroph, and A. E. Humphreys, Production of single cell protein from ethanol by fed-batch process. Biotechnol. Bioeng. 21, 1221–1237 (1979).

    Article  CAS  Google Scholar 

  44. S. P. Srinivas and R. Mutharasan, Inner filter effects and their interferences in the interpretation of culture fluorescence, Biotech. and Bioeng. 30, 769–774 (1987).

    Article  CAS  Google Scholar 

  45. N. S. Wang and M. B. Simmons, Effect of background fluorophores on the NADH fluorescence probe signal, Biotechnol. Tech. 5, 241–246 (1991).

    CAS  Google Scholar 

  46. J. K. Li and A. E. Humphrey, Use of fluorometry for monitoring and control of a bioreactor, Biotechnol. Bioeng. 37, 1043–1049 (1991).

    Article  CAS  Google Scholar 

  47. A. J. Lipton and M. M. Domach, Observing protein synthesis, export, and tryptophan incorporation by front-surface fluorometry, Biotechnol. Bioeng. 39, 13–19 (1992).

    Article  CAS  Google Scholar 

  48. J. Einsinger and J. Flores, Front-face fluorometry of liquid samples. Anal. Biochem. 94, 15–21 (1979).

    Google Scholar 

  49. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. *NADH and flavoprotein fluorescence signals, J. Biol. Chem. 254, 4764–4771 (1979).

    CAS  PubMed  Google Scholar 

  50. W. Halangk and W. S. Kunz, Use of NAD(P)H and flavoprotein fluorescence signals to characterize the redox state of pyridine nucleotides in epididymal bull spermatozoa, Biochim. Biophys. Acta 1056, 273–278 (1991).

    CAS  PubMed  Google Scholar 

  51. B. H. Junker, D. I.C. Wang, and T. A. Hatton, Fluorescence sensing of fermentation parameters using fiber optics, Biotechnol. and Bioeng. 32, 55–63 (1988).

    Article  CAS  Google Scholar 

  52. J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, Monitoring cell concentration and activity by multiple excitation fluorometry, Biotechnol. Prog. 7, 21–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. S.A. Siano and R. Mutharasan, NADH and flavin fluorescence responses of starved yeast cultures to substrate additions, Biotechnol. Bioeng. 34, 660–670 (1989).

    Article  CAS  Google Scholar 

  54. S. C. W. Kwong, L. Randers, and G. Rao, Consistency evaluation of batch fermentations based on online NADH fluorescence, Biotech. Prog. 8, 410–412 (1992).

    CAS  Google Scholar 

  55. S. J. Coppella and G. Rao, Practical considerations in the measurement of culture fluorescence, Biotechnol. Prog. 6, 398–401 (1990).

    CAS  PubMed  Google Scholar 

  56. S. C. W. Kwong, L. Randers, and G. Rao. On-line detection of substrate exhaustion using NAD(P)H fluorescence, Appl. Environ. Microbiol. 59, 604–606 (1993).

    CAS  PubMed  Google Scholar 

  57. S. C. W. Kwong and G. Rao, Metabolic monitoring by using the rate of change of NAD(P)H fluorescence, Biotechnol. Bioeng., in press.

    Google Scholar 

  58. R. C. Hughes, A. J. Ricco, M. A. Butler, and S. J. Martin, Chemical microsensors, Science 254, 74–80 (1988).

    Google Scholar 

  59. W. S. Kisaalitas, P. J. Slininger, R. J. Bothast, J. F. McCarthy, and R. L. Magin, Application of fiber-optic fluorescence measurements to on-line pH monitoring of a pseudomonad fermentation process, Biotech. Prog. 7, 564–569 (1991).

    Google Scholar 

  60. O. S. Wolfbeis, Fiber-optic sensors in biomedical sciences, Pure Appl. Chem. 59, 663–672 (1987).

    CAS  Google Scholar 

  61. O. S. Wolfbeis, in: Fiber-Optic Chemical Sensors and Biosensors, Vols. I and II (O. S. Wolfbeis, ed.), CRC Press, Boca Raton, Florida (1991).

    Google Scholar 

  62. W. H. Mullen and P. M. Vadgama, Microbial enzymes in biosensors, J. Appl. Bact. 61, 181–193 (1986).

    CAS  Google Scholar 

  63. S. L. Brooks, I. J. Higgins, J. D. Newman, and A. P. F. Turner, Biosensors for process control, Enzyme Microb. Technol. 13, 946–955 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. R. D. Kiss and G. N. Stephanopolous, Metabolic activity control of the L-lysine fermentation by restrained growth fed-batch strategies, Biotechnol Prog. 7, 501–509 (1991).

    Article  CAS  Google Scholar 

  65. R. Y. Tsien and T. Pozzan, Measurement of cytosolic free Ca2+ with Quin-2, Methods. Enzymol. 172, 230–262 (1989).

    CAS  PubMed  Google Scholar 

  66. J. R. Lakowicz, in: Principles of Fluorescence Spectroscopy, Plenum, New York (1983).

    Google Scholar 

  67. J. R. Lakowicz and B. P. Maliwal, Construction and performance of a variable-frequency-phase-modulation fluorometer, Biophys. Chem. 21, 61–78 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. J. R. Lakowicz, G. Laczko, and I. Gryczynski, 2-GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57, 2499–2506 (1986).

    Article  CAS  Google Scholar 

  69. J. R. Bacon and J. N. Demas, Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex, Anal. Chem. 59, 2780–2875 (1987).

    Article  CAS  Google Scholar 

  70. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes, Anal. Chem. 63, 337–342 (1991).

    CAS  Google Scholar 

  71. K. W. Berndt and J. R. Lakowicz, Electroluminescent lamp-based phase fluorometer and oxygen sensor, Anal. Biochem. 201, 319–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. C. A. Parker, Photoluminescence of Solutions, Elsevier, Amsterdam (1968).

    Google Scholar 

  73. S. B. Bambot, R. Holavanahali, J. R. Lakowicz, G.M. Carter, and G. Rao, Phase fluorometric sterilizable optical oxygen sensor, Biotechnol. Bioeng. 43, 1139–1145 (1994).

    Article  CAS  Google Scholar 

  74. M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner and O. S. Wolifbeis, Fiber-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta. 205, 1–6 (1988).

    Article  CAS  Google Scholar 

  75. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J. Biol. Chem. 262, 5476–5482 (1987).

    CAS  PubMed  Google Scholar 

  76. J. R. Lakowicz, H. Szmacinski, and M. Karakelle, Optical sensing of pH and pCO2 using phase-modulation fluorometry and resonance energy transfer, Analytica Chim. Acta 272, 179–186 (1993).

    CAS  Google Scholar 

  77. J. R. Lakowicz, H. Szmacinski, and K. W. Berndt, Fluorescence lifetime-based sensing of blood gases and cations, SPIE Proc. 1648–17 (1992b).

    Google Scholar 

  78. G. Gabor and D. R. Walt. 1991. Sensitivity enhancement of fluorescent pH indicators by inner filter effects, Anal. Chem. 63, 793–796 (1991).

    Article  CAS  Google Scholar 

  79. P. Yuan, D. M. Jordan, F. P. Milanovich, and D. R. Walt, Fiber-optic chemical sensors based on energy transfer, SPIE Proc. 906, 28–29 (1988).

    Google Scholar 

  80. P. Yuan and D. R. Walt, pH-Dependent fluorescence of merocyanine-eosin-labeled water-soluble polymers, Macromolecules 23, 4611–4615 (1990).

    CAS  Google Scholar 

  81. E. P. Diamindis, Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications, Clin. Biochem. 21, 139–150 (1988).

    Google Scholar 

  82. T. Lovgren, I. Heemila, K. Pettersson, and P. Halonen, in: Time-Resolved Fluorometry in Immunoassay, Alternative Immunoassays, John Wiley & Sons, New York (1985).

    Google Scholar 

  83. E. J. Soini, J. Pelliniemi, A. Hemmila, V-M Mukkaka, J. J. Kankare, and K. Frojdman, Lanthanide chelates as new fluorochrome labels for cytochemistry, J. Histochem. Cytochem. 36, 1449–1451 (1988).

    CAS  PubMed  Google Scholar 

  84. S. B. Bambot, J, Sipior, J. R. Lakowicz, and G. Rao, Lifetime-based optical sensing of pH using resonance energy transfer in sol-gel sensors, Sensors & Actuators B, in press.

    Google Scholar 

  85. D. Avnir, S. Braun, and M. Ottolenghi, The Encapsulation of Organic Molecules and Enzymes in Sol-Gel Glasses: Novel Photoactive, Optical, Sensing and Bioactive Materials. A Review. National Technical Information Service (NTIS) Publication No. AD-A224 154, 21 pp. (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rao, G. et al. (2002). Application of Fluorescence Sensing to Bioreactors. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-306-47060-8_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47060-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44784-6

  • Online ISBN: 978-0-306-47060-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics